

CycloneDX’s Python Library documentation

OWASP CycloneDX [https://cyclonedx.org/] is a full-stack Bill of Materials (BOM) standard
that provides advanced supply chain capabilities for cyber risk reduction.

This Python package provides data models, validators and more,
to help you create/render/read CycloneDX documents.

This package is not designed for standalone use. It is a software library.

As of version 3.0.0 of this library, the internal data model was adjusted to allow CycloneDX VEX documents to be produced as per
official examples [https://cyclonedx.org/capabilities/bomlink/#linking-external-vex-to-bom-inventory] linking VEX to a separate CycloneDX document.

If you’re looking for a CycloneDX tool to run to generate (SBOM) software bill-of-materials documents, why not checkout
CycloneDX Python [https://pypi.org/project/cyclonedx-bom/] or Jake [https://pypi.org/project/jake].

Contents:

	Installation
	Extras

	Architecture
	Modelling

	Schema Support

	Outputting

	Examples
	Complex Serialize

	Complex Deserialize

	Contributing
	Setup

	Code style

	Documentation

	Testing

	Sign off your commits

	Pre-commit hooks

	Support
	Python Version Support

	Changelog
	CHANGELOG

	API Reference
	cyclonedx

Installation

Install from pypi.org [https://pypi.org/project/cyclonedx-python-lib/] as you would any other Python module using your preferred package manager:

pip install cyclonedx-python-lib

CycloneDX-python-lib is also available from conda-forge [https://anaconda.org/conda-forge/cyclonedx-python-lib].

Extras

The following extras are available when installing this package:

	json-validation
	Install the optional dependencies needed for JSON validation.

	xml-validation
	Install the optional dependencies needed for XML validation.

	validation
	Install the optional dependencies needed for all supported validations.

They can be used when installing in order to include additional dependencies, e.g.:

pip install 'cyclonedx-python-lib[validation]'

Architecture

This library broadly is separated into three key functional areas:

	Model: Internal models used to unify data.

Note: As of version 4.0.0 of this library we support deserialization from JSON and XML as well as
serialization to JSON and XML.

	Output: Choose and configure an output which allows you to define output format as well as the CycloneDX schema
version

When wishing to generate a BOM, the process is as follows:

	
	Generate a Model by either:
	
	Programmatically using this library

	By deserializing from an existing CycloneDX BOM document

	Output the Model using an cyclonedx.output instance that reflects the schema version and format you require

Contents:

	Modelling
	Example BOM created programmatically

	Example BOM created from existing CycloneDX BOM

	Schema Support
	Root Level Schema Support

	Internal Model Schema Support

	Outputting
	Supported CycloneDX Schema Versions

	Outputting to JSON

	Outputting to XML

Modelling

You can create a BOM Model from either manually using the methods available
directly on the cyclonedx.model.bom.Bom class,
or deserialize a JSON/XML via cyclonedx.model.bom.Bom.from_json()/cyclonedx.model.bom.Bom.from_xml()

Vulnerabilities are supported by the Model as of version 0.3.0.

Note: Known vulnerabilities associated with Components can be sourced from various data sources, but this library
will not source them for you. Perhaps look at Jake [https://pypi.org/project/jake] if you’re interested in this.

Example BOM created programmatically

Note

It is recommended that you have a good understanding of the CycloneDX Schema [https://cyclonedx.org/docs/latest] before attempting to create a BOM
programmatically with this library.

For the most up-to-date in-depth examples, look at our Unit Tests [https://github.com/CycloneDX/cyclonedx-python-lib/tree/main/tests].

Example BOM created from existing CycloneDX BOM

Note

Supported from version 4.0.0 of this library.

Deserializing from a CycloneDX JSON BOM

Each model class in this library that is serializable provides a magic from_json() method.

See the example below to read and deserialize a JSON CycloneDX document. Note that reading the file and loading as JSON
is the programmers responsibility.

import json
from cyclonedx.model.bom import Bom

with open('/path/to/my/cyclonedx.json') as input_json:
 deserialized_bom = Bom.from_json(data=json.loads(input_json.read()))

Deserializing from a CycloneDX XML BOM

Each model class in this library that is serializable provides a magic from_xml() method.

See the example below to read and deserialize a XML CycloneDX document. Note that reading the file and loading as XML
is the programmers responsibility. Be careful to avoid XML vulnerabilities as documented here [https://docs.python.org/3/library/xml.html#xml-vulnerabilities]. It is recommended that
you use a library such as defusedxml instead of the native xml.etree.ElementTree.

from xml.etree import ElementTree
from cyclonedx.model.bom import Bom

with open('/path/to/my/cyclonedx.xml') as input_xml:
 deserialized_bom = cast(Bom, Bom.from_xml(data=ElementTree.fromstring(input_xml.read())))

Schema Support

This library has partial support for the CycloneDX specification (we continue to grow support).

The following sub-sections aim to explain what support this library provides and any known gaps in support. We do this
by calling out support for data as defined in the latest CycloneDX standard specification, regardless of whether it is
supported in prior versions of the CycloneDX schema.

Root Level Schema Support

	Data Path

	Supported?

	Notes

	bom[@version]

	Yes

	

	bom[@serialNumber]

	Yes

	

	bom.metadata

	Yes

	Not supported: lifecycles

	bom.components

	Yes

	Not supported: modified (as it is deprecated), modelCard, data, signature.

	bom.services

	Yes

	Not supported: signature.

	bom.externalReferences

	Yes

	

	bom.dependencies

	Yes

	Since 2.3.0

	bom.compositions

	No

	

	bom.properties

	Yes

	Supported when outputting to Schema Version >= 1.5. See schema specification bug 130 [https://github.com/CycloneDX/specification/issues/130]

	bom.vulnerabilities

	Yes

	Note: Prior to CycloneDX 1.4, these were present under bom.components via a schema extension.
Note: As of cyclonedx-python-lib >3.0.0, Vulnerability are modelled differently

	bom.annotations

	No

	

	bom.formulation

	No

	

	bom.declarations

	No

	

	bom.definitions

	No

	

	bom.signature

	No

	

Internal Model Schema Support

	Internal Model

	Supported?

	Notes

	ComponentEvidence

	Yes

	Not currently supported: callstack, identity, occurrences.

	DisjunctiveLicense

	Yes

	Not currently supported: @bom-ref, licensing, properties.

	LicenseExpression

	Yes

	Not currently supported: @bom-ref

	OrganizationalContact

	Yes

	Not currently supported: @bom-ref

	OrganizationalEntity

	Yes

	Not currently supported: @bom-ref

Outputting

Once you have an instance of a cyclonedx.model.bom.Bom you can produce output in either JSON or XML
against any of the supported CycloneDX schema versions.

We provide two helper methods:

	Output to string (for you to do with as you require)

	Output directly to a filename you provide

By default output will be in XML at latest supported schema version - see cyclonedx.output.LATEST_SUPPORTED_SCHEMA_VERSION.

Supported CycloneDX Schema Versions

This library supports the following schema versions:

	1.0 (XML) - (note, 1.1 schema version has no support for JSON)

	1.1 (XML) - (note, 1.1 schema version has no support for JSON)

	1.2 (XML, JSON)

	1.3 (XML, JSON)

	1.4 (XML, JSON) - the latest supported schema version

Outputting to JSON

The below example relies on the latest schema version, but sets the output format to JSON. Output is returned
as a str.

from cyclonedx.output import get_instance, BaseOutput, OutputFormat

outputter: BaseOutput = get_instance(bom=bom, output_format=OutputFormat.JSON)
bom_json: str = outputter.output_as_string()

Outputting to XML

The below example relies on the default output format being XML, but overrides the schema version to 1.2. Output is
written to the supplied filename.

from cyclonedx.output import get_instance, BaseOutput, SchemaVersion

outputter: BaseOutput = get_instance(bom=bom, schema_version=SchemaVersion.V1_2)
outputter.output_to_file(filename='/tmp/sbom-v1.2.xml')

Examples

Complex Serialize

 1# This file is part of CycloneDX Python Lib
 2#
 3# Licensed under the Apache License, Version 2.0 (the "License");
 4# you may not use this file except in compliance with the License.
 5# You may obtain a copy of the License at
 6#
 7# http://www.apache.org/licenses/LICENSE-2.0
 8#
 9# Unless required by applicable law or agreed to in writing, software
 10# distributed under the License is distributed on an "AS IS" BASIS,
 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12# See the License for the specific language governing permissions and
 13# limitations under the License.
 14#
 15# SPDX-License-Identifier: Apache-2.0
 16# Copyright (c) OWASP Foundation. All Rights Reserved.
 17
 18import sys
 19from typing import TYPE_CHECKING
 20
 21from packageurl import PackageURL
 22
 23from cyclonedx.exception import MissingOptionalDependencyException
 24from cyclonedx.factory.license import LicenseFactory
 25from cyclonedx.model import XsUri
 26from cyclonedx.model.bom import Bom
 27from cyclonedx.model.component import Component, ComponentType
 28from cyclonedx.model.contact import OrganizationalEntity
 29from cyclonedx.output import make_outputter
 30from cyclonedx.output.json import JsonV1Dot5
 31from cyclonedx.schema import OutputFormat, SchemaVersion
 32from cyclonedx.validation import make_schemabased_validator
 33from cyclonedx.validation.json import JsonStrictValidator
 34
 35if TYPE_CHECKING:
 36 from cyclonedx.output.json import Json as JsonOutputter
 37 from cyclonedx.output.xml import Xml as XmlOutputter
 38 from cyclonedx.validation.xml import XmlValidator
 39
 40
 41lc_factory = LicenseFactory()
 42
 43# region build the BOM
 44
 45bom = Bom()
 46bom.metadata.component = root_component = Component(
 47 name='myApp',
 48 type=ComponentType.APPLICATION,
 49 licenses=[lc_factory.make_from_string('MIT')],
 50 bom_ref='myApp',
 51)
 52
 53component1 = Component(
 54 type=ComponentType.LIBRARY,
 55 name='some-component',
 56 group='acme',
 57 version='1.33.7-beta.1',
 58 licenses=[lc_factory.make_from_string('(c) 2021 Acme inc.')],
 59 supplier=OrganizationalEntity(
 60 name='Acme Inc',
 61 urls=[XsUri('https://www.acme.org')]
 62),
 63 bom_ref='myComponent@1.33.7-beta.1',
 64 purl=PackageURL('generic', 'acme', 'some-component', '1.33.7-beta.1')
 65)
 66bom.components.add(component1)
 67bom.register_dependency(root_component, [component1])
 68
 69component2 = Component(
 70 type=ComponentType.LIBRARY,
 71 name='some-library',
 72 licenses=[lc_factory.make_from_string('GPL-3.0-only WITH Classpath-exception-2.0')]
 73)
 74bom.components.add(component2)
 75bom.register_dependency(component1, [component2])
 76
 77# endregion build the BOM
 78
 79# region JSON
 80"""demo with explicit instructions for SchemaVersion, outputter and validator"""
 81
 82my_json_outputter: 'JsonOutputter' = JsonV1Dot5(bom)
 83serialized_json = my_json_outputter.output_as_string(indent=2)
 84print(serialized_json)
 85my_json_validator = JsonStrictValidator(SchemaVersion.V1_6)
 86try:
 87 validation_errors = my_json_validator.validate_str(serialized_json)
 88 if validation_errors:
 89 print('JSON invalid', 'ValidationError:', repr(validation_errors), sep='\n', file=sys.stderr)
 90 sys.exit(2)
 91 print('JSON valid')
 92except MissingOptionalDependencyException as error:
 93 print('JSON-validation was skipped due to', error)
 94
 95# endregion JSON
 96
 97print('', '=' * 30, '', sep='\n')
 98
 99# region XML
100"""demo with implicit instructions for SchemaVersion, outputter and validator. TypeCheckers will catch errors."""
101
102my_xml_outputter: 'XmlOutputter' = make_outputter(bom, OutputFormat.XML, SchemaVersion.V1_6)
103serialized_xml = my_xml_outputter.output_as_string(indent=2)
104print(serialized_xml)
105my_xml_validator: 'XmlValidator' = make_schemabased_validator(
106 my_xml_outputter.output_format, my_xml_outputter.schema_version)
107try:
108 validation_errors = my_xml_validator.validate_str(serialized_xml)
109 if validation_errors:
110 print('XML invalid', 'ValidationError:', repr(validation_errors), sep='\n', file=sys.stderr)
111 sys.exit(2)
112 print('XML valid')
113except MissingOptionalDependencyException as error:
114 print('XML-validation was skipped due to', error)
115
116# endregion XML

Complex Deserialize

 1# This file is part of CycloneDX Python Lib
 2#
 3# Licensed under the Apache License, Version 2.0 (the "License");
 4# you may not use this file except in compliance with the License.
 5# You may obtain a copy of the License at
 6#
 7# http://www.apache.org/licenses/LICENSE-2.0
 8#
 9# Unless required by applicable law or agreed to in writing, software
 10# distributed under the License is distributed on an "AS IS" BASIS,
 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12# See the License for the specific language governing permissions and
 13# limitations under the License.
 14#
 15# SPDX-License-Identifier: Apache-2.0
 16# Copyright (c) OWASP Foundation. All Rights Reserved.
 17
 18import sys
 19from json import loads as json_loads
 20from typing import TYPE_CHECKING
 21
 22from defusedxml import ElementTree as SafeElementTree # type:ignore[import-untyped]
 23
 24from cyclonedx.exception import MissingOptionalDependencyException
 25from cyclonedx.model.bom import Bom
 26from cyclonedx.schema import OutputFormat, SchemaVersion
 27from cyclonedx.validation import make_schemabased_validator
 28from cyclonedx.validation.json import JsonStrictValidator
 29
 30if TYPE_CHECKING:
 31 from cyclonedx.validation.xml import XmlValidator
 32
 33# region JSON
 34
 35json_data = """{
 36 "$schema": "http://cyclonedx.org/schema/bom-1.6.schema.json",
 37 "bomFormat": "CycloneDX",
 38 "specVersion": "1.6",
 39 "serialNumber": "urn:uuid:88fabcfa-7529-4ba2-8256-29bec0c03900",
 40 "version": 1,
 41 "metadata": {
 42 "timestamp": "2024-02-10T21:38:53.313120+00:00",
 43 "tools": [
 44 {
 45 "vendor": "CycloneDX",
 46 "name": "cyclonedx-python-lib",
 47 "version": "6.4.1",
 48 "externalReferences": [
 49 {
 50 "type": "build-system",
 51 "url": "https://github.com/CycloneDX/cyclonedx-python-lib/actions"
 52 },
 53 {
 54 "type": "distribution",
 55 "url": "https://pypi.org/project/cyclonedx-python-lib/"
 56 },
 57 {
 58 "type": "documentation",
 59 "url": "https://cyclonedx-python-library.readthedocs.io/"
 60 },
 61 {
 62 "type": "issue-tracker",
 63 "url": "https://github.com/CycloneDX/cyclonedx-python-lib/issues"
 64 },
 65 {
 66 "type": "license",
 67 "url": "https://github.com/CycloneDX/cyclonedx-python-lib/blob/main/LICENSE"
 68 },
 69 {
 70 "type": "release-notes",
 71 "url": "https://github.com/CycloneDX/cyclonedx-python-lib/blob/main/CHANGELOG.md"
 72 },
 73 {
 74 "type": "vcs",
 75 "url": "https://github.com/CycloneDX/cyclonedx-python-lib"
 76 },
 77 {
 78 "type": "website",
 79 "url": "https://github.com/CycloneDX/cyclonedx-python-lib/#readme"
 80 }
 81]
 82 }
 83],
 84 "component": {
 85 "bom-ref": "myApp",
 86 "name": "myApp",
 87 "type": "application",
 88 "licenses": [
 89 {
 90 "license": {
 91 "id": "MIT"
 92 }
 93 }
 94]
 95 }
 96 },
 97 "components": [
 98 {
 99 "bom-ref": "myComponent@1.33.7-beta.1",
100 "type": "library",
101 "group": "acme",
102 "name": "some-component",
103 "version": "1.33.7-beta.1",
104 "purl": "pkg:generic/acme/some-component@1.33.7-beta.1",
105 "licenses": [
106 {
107 "license": {
108 "name": "(c) 2021 Acme inc."
109 }
110 }
111],
112 "supplier": {
113 "name": "Acme Inc",
114 "url": [
115 "https://www.acme.org"
116]
117 }
118 },
119 {
120 "bom-ref": "some-lib",
121 "type": "library",
122 "name": "some-library",
123 "licenses": [
124 {
125 "expression": "GPL-3.0-only WITH Classpath-exception-2.0"
126 }
127]
128 }
129],
130 "dependencies": [
131 {
132 "ref": "some-lib"
133 },
134 {
135 "dependsOn": [
136 "myComponent@1.33.7-beta.1"
137],
138 "ref": "myApp"
139 },
140 {
141 "dependsOn": [
142 "some-lib"
143],
144 "ref": "myComponent@1.33.7-beta.1"
145 }
146]
147}"""
148my_json_validator = JsonStrictValidator(SchemaVersion.V1_6)
149try:
150 validation_errors = my_json_validator.validate_str(json_data)
151 if validation_errors:
152 print('JSON invalid', 'ValidationError:', repr(validation_errors), sep='\n', file=sys.stderr)
153 sys.exit(2)
154 print('JSON valid')
155except MissingOptionalDependencyException as error:
156 print('JSON-validation was skipped due to', error)
157bom_from_json = Bom.from_json(# type: ignore[attr-defined]
158 json_loads(json_data))
159print('bom_from_json', repr(bom_from_json))
160
161# endregion JSON
162
163print('', '=' * 30, '', sep='\n')
164
165# endregion XML
166
167xml_data = """<?xml version="1.0" ?>
168<bom xmlns="http://cyclonedx.org/schema/bom/1.6"
169 serialNumber="urn:uuid:88fabcfa-7529-4ba2-8256-29bec0c03900"
170 version="1"
171>
172 <metadata>
173 <timestamp>2024-02-10T21:38:53.313120+00:00</timestamp>
174 <tools>
175 <tool>
176 <vendor>CycloneDX</vendor>
177 <name>cyclonedx-python-lib</name>
178 <version>6.4.1</version>
179 <externalReferences>
180 <reference type="build-system">
181 <url>https://github.com/CycloneDX/cyclonedx-python-lib/actions</url>
182 </reference>
183 <reference type="distribution">
184 <url>https://pypi.org/project/cyclonedx-python-lib/</url>
185 </reference>
186 <reference type="documentation">
187 <url>https://cyclonedx-python-library.readthedocs.io/</url>
188 </reference>
189 <reference type="issue-tracker">
190 <url>https://github.com/CycloneDX/cyclonedx-python-lib/issues</url>
191 </reference>
192 <reference type="license">
193 <url>https://github.com/CycloneDX/cyclonedx-python-lib/blob/main/LICENSE</url>
194 </reference>
195 <reference type="release-notes">
196 <url>https://github.com/CycloneDX/cyclonedx-python-lib/blob/main/CHANGELOG.md</url>
197 </reference>
198 <reference type="vcs">
199 <url>https://github.com/CycloneDX/cyclonedx-python-lib</url>
200 </reference>
201 <reference type="website">
202 <url>https://github.com/CycloneDX/cyclonedx-python-lib/#readme</url>
203 </reference>
204 </externalReferences>
205 </tool>
206 </tools>
207 <component type="application" bom-ref="myApp">
208 <name>myApp</name>
209 <licenses>
210 <license>
211 <id>MIT</id>
212 </license>
213 </licenses>
214 </component>
215 </metadata>
216 <components>
217 <component type="library" bom-ref="myComponent@1.33.7-beta.1">
218 <supplier>
219 <name>Acme Inc</name>
220 <url>https://www.acme.org</url>
221 </supplier>
222 <group>acme</group>
223 <name>some-component</name>
224 <version>1.33.7-beta.1</version>
225 <licenses>
226 <license>
227 <name>(c) 2021 Acme inc.</name>
228 </license>
229 </licenses>
230 <purl>pkg:generic/acme/some-component@1.33.7-beta.1</purl>
231 </component>
232 <component type="library" bom-ref="some-lib">
233 <name>some-library</name>
234 <licenses>
235 <expression>GPL-3.0-only WITH Classpath-exception-2.0</expression>
236 </licenses>
237 </component>
238 </components>
239 <dependencies>
240 <dependency ref="some-lib"/>
241 <dependency ref="myApp">
242 <dependency ref="myComponent@1.33.7-beta.1"/>
243 </dependency>
244 <dependency ref="myComponent@1.33.7-beta.1">
245 <dependency ref="some-lib"/>
246 </dependency>
247 </dependencies>
248</bom>"""
249my_xml_validator: 'XmlValidator' = make_schemabased_validator(OutputFormat.XML, SchemaVersion.V1_6)
250try:
251 validation_errors = my_xml_validator.validate_str(xml_data)
252 if validation_errors:
253 print('XML invalid', 'ValidationError:', repr(validation_errors), sep='\n', file=sys.stderr)
254 sys.exit(2)
255 print('XML valid')
256except MissingOptionalDependencyException as error:
257 print('XML-validation was skipped due to', error)
258bom_from_xml = Bom.from_xml(# type: ignore[attr-defined]
259 SafeElementTree.fromstring(xml_data))
260print('bom_from_xml', repr(bom_from_xml))
261
262# endregion XML
263
264print('', '=' * 30, '', sep='\n')
265
266print('assert bom_from_json equals bom_from_xml')
267assert bom_from_json == bom_from_xml, 'expected to have equal BOMs from JSON and XML'

Contributing

Pull requests are welcome.
But please read the
CycloneDX contributing guidelines [https://github.com/CycloneDX/.github/blob/master/CONTRIBUTING.md]
first.

Setup

This project uses poetry [https://python-poetry.org]. Have it installed and setup first.

To install dev-dependencies and tools:

poetry install --all-extras

Code style

This project uses PEP8 [https://www.python.org/dev/peps/pep-0008] Style Guide for Python Code.

 Support

Support

If you run into issues utilising this library, please raise a GitHub Issue [https://github.com/CycloneDX/cyclonedx-python/issues]. When raising an issue please include as
much detail as possible including:

	Version cyclonedx-python-lib you have installed

	Input(s)

	Expected Output(s)

	Actual Output(s)

Python Version Support

We endeavour to support all functionality for all current actively supported Python versions [https://www.python.org/downloads/].
However, some features may not be possible/present in older Python versions due to their lack of support - which are
noted below.

 Changelog

Changelog

CHANGELOG

v7.3.2 (2024-04-26)

Fix

	fix: properly sort components based on all properties (#599)

reverts #587 - as this one introduced errors
fixes #598
fixes #586

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>
Signed-off-by: Paul Horton <paul.horton@owasp.org>
Co-authored-by: Paul Horton <paul.horton@owasp.org> (``8df488c` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/8df488cb422a6363421fee39714df4e8e8e7a593>`_)

v7.3.1 (2024-04-22)

Chore

	chore: semantic-release git commit/sign valid email address

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``d437c40` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/d437c40caa70071f0fcfe4e3c970370ee32d4aba>`_)

Fix

	fix: include all fields of Component in __lt__ function for #586 (#587)

Fixes #586.

Signed-off-by: Paul Horton <paul.horton@owasp.org> (``d784685` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/d7846850d1ad33184d1d58b59fdf41a778d05900>`_)

v7.3.0 (2024-04-19)

Feature

	feat: license factory set acknowledgement (#593)

add a parameter to LicenseFactory.make_*() methods, to set the LicenseAcknowledgement.

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``7ca2455` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/7ca2455018d0e191afaaa2fd136a7e4d5b325ec6>`_)

v7.2.0 (2024-04-19)

Feature

	feat: disjunctive license acknowledgement (#591)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``9bf1839` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/9bf1839859a244e790e91c3e1edd82d333598d60>`_)

Unknown

	tests: add meaningful names to validation tests (#588)

When packaging cyclonedx-python-lib for a Linux distribution, it’s
pretty common that some JSON validation tests fail. 1 [https://aur.archlinux.org/cgit/aur.git/diff/PKGBUILD?h=python-cyclonedx-lib&id=9c6ae556874a633a521407a77a9a85bb31da2047]

Due to the large number of combinations and the fact that these tests
are consecutively numbered, it has been tedious to figure out which
tests are exactly failing and why. This in turn makes it difficult to
decide which tests to disable or report upstream.

Append meaningful names to validation tests so that instead of e.g.:

[…]::TestJsonValidator::test_validate_no_none_001
[…]::TestJsonValidator::test_validate_no_none_002
[…]::TestJsonValidator::test_validate_no_none_003
[…]::TestJsonValidator::test_validate_no_none_004
[…]::TestJsonValidator::test_validate_no_none_005
[…]::TestJsonValidator::test_validate_no_none_006
[…]::TestJsonValidator::test_validate_no_none_007
[…]::TestJsonValidator::test_validate_no_none_008

the tests are named:

[…]::TestJsonValidator::test_validate_no_none_001_valid_component_swid_1_6
[…]::TestJsonValidator::test_validate_no_none_002_valid_machine_learning_considerations_env_1_6
[…]::TestJsonValidator::test_validate_no_none_003_valid_metadata_tool_1_6
[…]::TestJsonValidator::test_validate_no_none_004_valid_patch_1_6
[…]::TestJsonValidator::test_validate_no_none_005_valid_empty_components_1_6
[…]::TestJsonValidator::test_validate_no_none_006_valid_properties_1_6
[…]::TestJsonValidator::test_validate_no_none_007_valid_service_1_6
[…]::TestJsonValidator::test_validate_no_none_008_valid_metadata_author_1_6

Signed-off-by: Claudia <claui@users.noreply.github.com> (``ae3f79c` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/ae3f79cbaeecda94948bff6a64ab797c5ddd934a>`_)

	doc: poor merge resolved

Signed-off-by: Paul Horton <paul.horton@owasp.org> (``a498faa` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/a498faaab248d0512bad9e66afbd8fb1d6c42a66>`_)

v7.1.0 (2024-04-10)

Documentation

	docs: missing schema support table & update schema support to reflect version 7.0.0 (#584)

Signed-off-by: Paul Horton <paul.horton@owasp.org> (``d230e67` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/d230e67188661a5fb94730e52bf59c11c965c8d7>`_)

Feature

	feat: support bom.properties for CycloneDX v1.5+ (#585)

Signed-off-by: Paul Horton <paul.horton@owasp.org> (``1d1c45a` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/1d1c45ac82c7927acc388489228a9b5990f68aa7>`_)

v7.0.0 (2024-04-09)

Breaking

	feat!: Support for CycloneDX v1.6

	added draft v1.6 schemas and boilerplate for v1.6

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	re-generated test snapshots for v1.6

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	note bom.metadata.manufacture as deprecated

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	work on bom.metadata for v1.6

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	Deprecated .component.author. Added .component.authors and .component.manufacturer

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	work to add .component.omniborid - but tests deserialisation tests fail due to schema differences (.component.author not in 1.6)

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	work to get deserialization tests passing

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	chore(deps): bump py-serializable to >=1.0.3 to resolve issues with deserialization to XML

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	imports tidied

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	properly added .component.swhid

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	add .component.cryptoProperties - with test failures for SchemaVersion < 1.6

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	typing and bandit ignores

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	coding standards

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	test filtering

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	coding standards

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	additional tests to increase code coverage

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	corrected CryptoMode enum

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	coding standards

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	Added address to organizationalEntity

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	Added address to organizationalEntity

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	raise UserWarning in .component.version has length > 1024

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	coding standards and typing

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	add acknowledgement to LicenseExpression (#582)

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	more proper way to filter test cases

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	update schema to published versions

Signed-off-by: Paul Horton <paul.horton@owasp.org>

	fetch schema 1.6 JSON

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	fetch test data for CDX 1.6

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	reformat

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	reformat

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	refactor

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	style

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	refactor

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

	docs

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>

Signed-off-by: Paul Horton <paul.horton@owasp.org>
Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>
Co-authored-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``8bbdf46` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/8bbdf461434ab66673a496a8305c2878bf5c88da>`_)

Chore

	chore(deps-dev): update autopep8 requirement from 2.0.4 to 2.1.0 (#573)

Updates the requirements on autopep8 [https://github.com/hhatto/autopep8] to permit the latest version.

	Release notes [https://github.com/hhatto/autopep8/releases]

	Commits [https://github.com/hhatto/autopep8/compare/v2.0.4...v2.1.0]

updated-dependencies:

	dependency-name: autopep8
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``35749c6` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/35749c6cd18ebb8911b7cefac8a381d2ee57177a>`_)

	chore(deps-dev): update tox requirement from 4.14.1 to 4.14.2 (#574)

Updates the requirements on tox [https://github.com/tox-dev/tox] to permit the latest version.

	Release notes [https://github.com/tox-dev/tox/releases]

	Changelog [https://github.com/tox-dev/tox/blob/main/docs/changelog.rst]

	Commits [https://github.com/tox-dev/tox/compare/4.14.1...4.14.2]

updated-dependencies:

	dependency-name: tox
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``d60f457` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/d60f4570621246ce3d68e7f2e7f1aa831fb818f0>`_)

v6.4.4 (2024-03-18)

Chore

	chore(deps-dev): update coverage requirement from 7.4.3 to 7.4.4 (#570)

Updates the requirements on coverage [https://github.com/nedbat/coveragepy] to permit the latest version.

	Release notes [https://github.com/nedbat/coveragepy/releases]

	Changelog [https://github.com/nedbat/coveragepy/blob/master/CHANGES.rst]

	Commits [https://github.com/nedbat/coveragepy/compare/7.4.3...7.4.4]

updated-dependencies:

	dependency-name: coverage
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``3a2e427` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/3a2e427ba9967f11c15cd1a47c59a933b699c87b>`_)

	chore(deps): bump python-semantic-release/python-semantic-release (#564)

Bumps python-semantic-release/python-semantic-release [https://github.com/python-semantic-release/python-semantic-release] from 8.5.1 to 9.1.1.

	Release notes [https://github.com/python-semantic-release/python-semantic-release/releases]

	Changelog [https://github.com/python-semantic-release/python-semantic-release/blob/master/CHANGELOG.md]

	Commits [https://github.com/python-semantic-release/python-semantic-release/compare/v8.5.1...v9.1.1]

updated-dependencies:

	dependency-name: python-semantic-release/python-semantic-release
dependency-type: direct:production
update-type: version-update:semver-major
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``d20a590` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/d20a5902582facab0636e9ff8a261edcaf886a3e>`_)

	chore(deps-dev): update tox requirement from 4.13.0 to 4.14.1 (#567)

Updates the requirements on tox [https://github.com/tox-dev/tox] to permit the latest version.

	Release notes [https://github.com/tox-dev/tox/releases]

	Changelog [https://github.com/tox-dev/tox/blob/main/docs/changelog.rst]

	Commits [https://github.com/tox-dev/tox/compare/4.13.0...4.14.1]

updated-dependencies:

	dependency-name: tox
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``2dcc60e` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/2dcc60e53ec66d642c728596ff25fed4df5659a0>`_)

	chore(deps-dev): update bandit requirement from 1.7.7 to 1.7.8 (#566)

Updates the requirements on bandit [https://github.com/PyCQA/bandit] to permit the latest version.

	Release notes [https://github.com/PyCQA/bandit/releases]

	Commits [https://github.com/PyCQA/bandit/compare/1.7.7...1.7.8]

updated-dependencies:

	dependency-name: bandit
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``eb1a252` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/eb1a2525c09e0dd10f11ff83b451a4db4fb00d9b>`_)

	chore(deps-dev): update mypy requirement from 1.8.0 to 1.9.0 (#565)

Updates the requirements on mypy [https://github.com/python/mypy] to permit the latest version.

	Changelog [https://github.com/python/mypy/blob/master/CHANGELOG.md]

	Commits [https://github.com/python/mypy/compare/v1.8.0...1.9.0]

updated-dependencies:

	dependency-name: mypy
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``3ce0f3a` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/3ce0f3a373d9f1b07af50d9b707f766ea446e518>`_)

Fix

	fix: wrong extra name for xml validation (#571)

Signed-off-by: Christoph Reiter <reiter.christoph@gmail.com> (``10e38e2` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/10e38e25095de4b2dafbfcd1fd81dce7a9c0f124>`_)

v6.4.3 (2024-03-04)

Chore

	chore(deps-dev): update ddt requirement from 1.7.1 to 1.7.2 (#563)

Updates the requirements on ddt [https://github.com/datadriventests/ddt] to permit the latest version.

	Release notes [https://github.com/datadriventests/ddt/releases]

	Commits [https://github.com/datadriventests/ddt/compare/1.7.1...1.7.2]

updated-dependencies:

	dependency-name: ddt
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``53cb8a9` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/53cb8a9aa2630e992467525ff246a0f6e6759100>`_)

Fix

	fix: serialization of model.component.Diff (#557)

Fixes #556

Signed-off-by: rcross-lc <151086351+rcross-lc@users.noreply.github.com>
Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com>
Co-authored-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``22fa873` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/22fa8734bf1a3a8789ad7578bfa0c86cf0a49d4a>`_)

v6.4.2 (2024-03-01)

Build

	build: use poetry v1.8.1 (#560)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``6f81dfa` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/6f81dfaed32b76f251647f6291791e714ab158a3>`_)

Chore

	chore(deps-dev): update coverage requirement from 7.4.1 to 7.4.3 (#558)

Updates the requirements on coverage [https://github.com/nedbat/coveragepy] to permit the latest version.

	Release notes [https://github.com/nedbat/coveragepy/releases]

	Changelog [https://github.com/nedbat/coveragepy/blob/master/CHANGES.rst]

	Commits [https://github.com/nedbat/coveragepy/compare/7.4.1...7.4.3]

updated-dependencies:

	dependency-name: coverage
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``2b7f261` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/2b7f261585faa6237e635b18d5ecaf03d81439ba>`_)

	chore(deps): bump Gr1N/setup-poetry from 8 to 9 (#555)

Bumps Gr1N/setup-poetry [https://github.com/gr1n/setup-poetry] from 8 to 9.

	Release notes [https://github.com/gr1n/setup-poetry/releases]

	Commits [https://github.com/gr1n/setup-poetry/compare/v8...v9]

updated-dependencies:

	dependency-name: Gr1N/setup-poetry
dependency-type: direct:production
update-type: version-update:semver-major
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``178ce32` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/178ce32c0da822b8f1b4d13b427d6f21ea252b59>`_)

	chore(deps-dev): update tox requirement from 4.12.1 to 4.13.0 (#553)

Updates the requirements on tox [https://github.com/tox-dev/tox] to permit the latest version.

	Release notes [https://github.com/tox-dev/tox/releases]

	Changelog [https://github.com/tox-dev/tox/blob/main/docs/changelog.rst]

	Commits [https://github.com/tox-dev/tox/compare/4.12.1...4.13.0]

updated-dependencies:

	dependency-name: tox
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``77fb2ec` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/77fb2ec3593fac577a48894f329a77a7ac6d417c>`_)

	chore(deps-dev): update flake8-quotes requirement from 3.3.2 to 3.4.0 (#552)

Updates the requirements on flake8-quotes [https://github.com/zheller/flake8-quotes] to permit the latest version.

	Commits [https://github.com/zheller/flake8-quotes/compare/3.3.2...3.4.0]

updated-dependencies:

	dependency-name: flake8-quotes
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``cd8e67c` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/cd8e67c15ae09a07f51f15855c1ae05734352f52>`_)

	chore(deps-dev): update flake8-bugbear requirement (#549)

Updates the requirements on flake8-bugbear [https://github.com/PyCQA/flake8-bugbear] to permit the latest version.

	Release notes [https://github.com/PyCQA/flake8-bugbear/releases]

	Commits [https://github.com/PyCQA/flake8-bugbear/compare/24.1.17...24.2.6]

updated-dependencies:

	dependency-name: flake8-bugbear
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``153d83e` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/153d83e5a18a2696d49884319fd156628a19cd7b>`_)

Documentation

	docs: update architecture description and examples (#550)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``a19fd28` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/a19fd2828355ae031164ef7a0dda2a8ea2365108>`_)

	docs: exclude internal docs from rendering (#545)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``7e55dfe` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/7e55dfe213cb2a88b3686f9e8bf93cf4642a2ccd>`_)

Unknown

	docs

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``63cff7e` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/63cff7ee697c9d5fb96da3c8c16f7c9bc7b34e58>`_)

	docs (#546)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``b0e5b43` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/b0e5b43880e17ec6ce23d5d4e1e7a9a2547c1e79>`_)

v6.4.1 (2024-01-30)

Chore

	chore(deps-dev): update bandit requirement from 1.7.6 to 1.7.7 (#542)

Updates the requirements on bandit [https://github.com/PyCQA/bandit] to permit the latest version.

	Release notes [https://github.com/PyCQA/bandit/releases]

	Commits [https://github.com/PyCQA/bandit/compare/1.7.6...1.7.7]

updated-dependencies:

	dependency-name: bandit
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``0d159c2` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/0d159c29cab7cd57e2028a302ef24f1947de235d>`_)

	chore(deps-dev): update coverage requirement from 7.4.0 to 7.4.1 (#541)

Updates the requirements on coverage [https://github.com/nedbat/coveragepy] to permit the latest version.

	Release notes [https://github.com/nedbat/coveragepy/releases]

	Changelog [https://github.com/nedbat/coveragepy/blob/master/CHANGES.rst]

	Commits [https://github.com/nedbat/coveragepy/compare/7.4.0...7.4.1]

updated-dependencies:

	dependency-name: coverage
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``fa82a24` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/fa82a2413f1aa350d16ad3ac0c5163da97e29e34>`_)

Documentation

	docs: ship docs with sdist build (#544)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``52ef01c` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/52ef01c99319d5aed950e7f6ef6fcfe731ac8b2f>`_)

	docs: refactor example

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``c1776b7` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/c1776b718b81cf72ef0c0251504e0d3631e30b17>`_)

Fix

	fix: model.BomRef no longer equal to unset peers (#543)

fixes #539 [https://github.com/CycloneDX/cyclonedx-python-lib/issues/539]

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``1fd7fee` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/1fd7fee9dec888c10087921f2e5a7a60062fb419>`_)

Unknown

	tests: fetched schema 1.5 test data from spec (#536)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``394cc87` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/394cc87b3247b6f57af4073f5548f1c5eada2b9b>`_)

v6.4.0 (2024-01-22)

Chore

	chore(deps-dev): update tox requirement from 4.12.0 to 4.12.1 (#533)

Updates the requirements on tox [https://github.com/tox-dev/tox] to permit the latest version.

	Release notes [https://github.com/tox-dev/tox/releases]

	Changelog [https://github.com/tox-dev/tox/blob/main/docs/changelog.rst]

	Commits [https://github.com/tox-dev/tox/compare/4.12.0...4.12.1]

updated-dependencies:

	dependency-name: tox
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``74094d7` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/74094d70c15afdd9991f8b731d318f66b686cf62>`_)

	chore(deps-dev): update flake8-bugbear requirement (#534)

Updates the requirements on flake8-bugbear [https://github.com/PyCQA/flake8-bugbear] to permit the latest version.

	Release notes [https://github.com/PyCQA/flake8-bugbear/releases]

	Commits [https://github.com/PyCQA/flake8-bugbear/compare/23.12.2...24.1.17]

updated-dependencies:

	dependency-name: flake8-bugbear
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``6e6f374` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/6e6f374ba282a67c9458b414704a3d86f4b593b4>`_)

	chore: doc flake8 config

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``bd4c078` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/bd4c0781139bc93e28438390650ef1c7484597bb>`_)

	chore(deps-dev): update tox requirement from 4.11.4 to 4.12.0 (#530)

Updates the requirements on tox [https://github.com/tox-dev/tox] to permit the latest version.

	Release notes [https://github.com/tox-dev/tox/releases]

	Changelog [https://github.com/tox-dev/tox/blob/main/docs/changelog.rst]

	Commits [https://github.com/tox-dev/tox/compare/4.11.4...4.12.0]

updated-dependencies:

	dependency-name: tox
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``130918a` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/130918a78d003255f1d80e6fe2031752c3baa6d1>`_)

Documentation

	docs: add OpenSSF Best Practices shield (#532)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``59c4381` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/59c43814b07db0aa881d87192939eb93e79b0cc2>`_)

Feature

	feat: support py-serializable v1.0 (#531)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``e1e7277` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/e1e72777d8a355c6854f4d9eb26c1e2083c806df>`_)

v6.3.0 (2024-01-06)

Chore

	chore(deps-dev): update flake8 requirement from 6.1.0 to 7.0.0 (#528)

Updates the requirements on flake8 [https://github.com/pycqa/flake8] to permit the latest version.

	Commits [https://github.com/pycqa/flake8/compare/6.1.0...7.0.0]

updated-dependencies:

	dependency-name: flake8
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``6b7ed78` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/6b7ed786845d21bf079c0a636d9e689ce278644c>`_)

	chore(deps-dev): update ddt requirement from 1.7.0 to 1.7.1 (#527)

Updates the requirements on ddt [https://github.com/datadriventests/ddt] to permit the latest version.

	Release notes [https://github.com/datadriventests/ddt/releases]

	Commits [https://github.com/datadriventests/ddt/compare/1.7.0...1.7.1]

updated-dependencies:

	dependency-name: ddt
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``9a58e7e` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/9a58e7ee921a077425ee45f23e9cfbb8341d7ef5>`_)

Documentation

	docs: add Documentation url to project meta

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``1080b73` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/1080b7387a0bbc49a067cd2efefb1545470947e5>`_)

	docs: add Documentation url to project meta

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``c4288b3` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/c4288b35e0e1050f0982f7492cfcd3bea34b445c>`_)

Feature

	feat: enable dependency py-serializable 0.17 (#529)

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``9f24220` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/9f24220029cd18cd191f63876899cd86be52dce1>`_)

v6.2.0 (2023-12-31)

Build

	build: allow additional major-version RC branch patterns

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``f8af156` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/f8af156c9c38f737b7067722d2a96f8a2a4fcb48>`_)

Chore

	chore(deps-dev): update coverage requirement from 7.3.3 to 7.4.0 (#524)

Updates the requirements on coverage [https://github.com/nedbat/coveragepy] to permit the latest version.

	Release notes [https://github.com/nedbat/coveragepy/releases]

	Changelog [https://github.com/nedbat/coveragepy/blob/master/CHANGES.rst]

	Commits [https://github.com/nedbat/coveragepy/compare/7.3.3...7.4.0]

updated-dependencies:

	dependency-name: coverage
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``9bcc223` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/9bcc223b783306cf2255b3910acf5518d7ea223c>`_)

	chore(deps-dev): update mypy requirement from 1.7.1 to 1.8.0 (#521)

Updates the requirements on mypy [https://github.com/python/mypy] to permit the latest version.

	Changelog [https://github.com/python/mypy/blob/master/CHANGELOG.md]

	Commits [https://github.com/python/mypy/compare/v1.7.1...v1.8.0]

updated-dependencies:

	dependency-name: mypy
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``720046e` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/720046e2f69c64216b5ef847ad5f76a95f450a8f>`_)

Documentation

	docs: fix typo

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``2563996` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/25639967c93ad464e486f2fe6a148b3be439f43d>`_)

	docs: update intro and description

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``f0bd05d` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/f0bd05dc854b5b71421b82cfb527fcb8f41a7c4a>`_)

	docs: buld docs on ubuntu22.04 python311

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``b3e9ab7` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/b3e9ab77696f2ee763f1746f8142bdf471477c39>`_)

Feature

	feat: allow lxml requirement in range of >=4,<6 (#523)

Updates the requirements on lxml [https://github.com/lxml/lxml] to permit the latest version.

	Release notes [https://github.com/lxml/lxml/releases]

	Changelog [https://github.com/lxml/lxml/blob/master/CHANGES.txt]

	Commits [https://github.com/lxml/lxml/compare/lxml-4.0.0...lxml-5.0.0]

updated-dependencies:

	dependency-name: lxml
dependency-type: direct:production
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``7d12b9a` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/7d12b9a9f7a2fdc5e6bb12f891c6f4291e20e65e>`_)

Unknown

	docs

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``7dcd166` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/7dcd16621002713dcf1ce8e17bc5762320fae4fa>`_)

v6.1.0 (2023-12-22)

Chore

	chore: update maintainers

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``87c72d7` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/87c72d7f589faea67c5f90f041531468f8ae480c>`_)

	chore(deps): bump python-semantic-release/python-semantic-release (#515)

Bumps python-semantic-release/python-semantic-release [https://github.com/python-semantic-release/python-semantic-release] from 8.5.0 to 8.5.1.

	Release notes [https://github.com/python-semantic-release/python-semantic-release/releases]

	Changelog [https://github.com/python-semantic-release/python-semantic-release/blob/master/CHANGELOG.md]

	Commits [https://github.com/python-semantic-release/python-semantic-release/compare/v8.5.0...v8.5.1]

updated-dependencies:

	dependency-name: python-semantic-release/python-semantic-release
dependency-type: direct:production
update-type: version-update:semver-patch
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``0f56ec4` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/0f56ec471268d0b27c5956b93021a982945873a2>`_)

	chore(deps-dev): update coverage requirement from 7.3.2 to 7.3.3 (#517)

Updates the requirements on coverage [https://github.com/nedbat/coveragepy] to permit the latest version.

	Release notes [https://github.com/nedbat/coveragepy/releases]

	Changelog [https://github.com/nedbat/coveragepy/blob/master/CHANGES.rst]

	Commits [https://github.com/nedbat/coveragepy/compare/7.3.2...7.3.3]

updated-dependencies:

	dependency-name: coverage
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``a57e2f6` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/a57e2f6ee14d015e58e2175dcbb087d971731f92>`_)

	chore(deps-dev): update isort requirement from 5.13.0 to 5.13.2 (#516)

Updates the requirements on isort [https://github.com/pycqa/isort] to permit the latest version.

	Release notes [https://github.com/pycqa/isort/releases]

	Changelog [https://github.com/PyCQA/isort/blob/main/CHANGELOG.md]

	Commits [https://github.com/pycqa/isort/compare/5.13.0...5.13.2]

updated-dependencies:

	dependency-name: isort
dependency-type: direct:development
…

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> (``84874a3` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/84874a39610b0108335413da23f50b2911c20c78>`_)

Feature

	feat: add function to map python hashlib algorithms to CycloneDX (#519)

new API: model.HashType.from_hashlib_alg()

Signed-off-by: Jan Kowalleck <jan.kowalleck@gmail.com> (``81f8cf5` <https://github.com/CycloneDX/cyclonedx-python-lib/commit/81f8cf59b1f40ffbd213789a8b1b621a01e3f631>`_)

v6.0.0 (2023-12-10)

Breaking

	feat!: v6.0.0 (#492)

Breaking Changes

	Removed symbols that were already marked as deprecated (via #493 [https://github.com/CycloneDX/cyclonedx-python-lib/pull/493])

	Removed symbols in parser.* (#489 [https://github.com/CycloneDX/cyclonedx-python-lib/issues/489] via #495 [https://github.com/CycloneDX/cyclonedx-python-lib/pull/495])

	Removed output.LATEST_SUPPORTED_SCHEMA_VERSION (#491 [https://github.com/CycloneDX/cyclonedx-python-lib/issues/491] via #494 [https://github.com/CycloneDX/cyclonedx-python-lib/pull/494])

	Serialization of unsupported enum values might downgrade/migrate/omit them (#490 [https://github.com/CycloneDX/cyclonedx-python-lib/issues/490] via #496 [https://github.com/CycloneDX/cyclonedx-python-lib/pull/496])

 API Reference

API Reference

This page contains auto-generated API reference documentation [1].

	cyclonedx
	cyclonedx.exception
	cyclonedx.exception.factory

	cyclonedx.exception.model

	cyclonedx.exception.output

	cyclonedx.exception.serialization

	cyclonedx.factory
	cyclonedx.factory.license

	cyclonedx.model
	cyclonedx.model.bom

	cyclonedx.model.bom_ref

	cyclonedx.model.component

	cyclonedx.model.contact

	cyclonedx.model.crypto

	cyclonedx.model.dependency

	cyclonedx.model.impact_analysis

	cyclonedx.model.issue

	cyclonedx.model.license

	cyclonedx.model.release_note

	cyclonedx.model.service

	cyclonedx.model.vulnerability

	cyclonedx.output
	cyclonedx.output.json

	cyclonedx.output.xml

	cyclonedx.schema
	cyclonedx.schema.schema

	cyclonedx.serialization

	cyclonedx.validation
	cyclonedx.validation.json

	cyclonedx.validation.model

	cyclonedx.validation.xml

	cyclonedx.spdx

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

 cyclonedx

cyclonedx

Python library for CycloneDX

Subpackages

	cyclonedx.exception
	cyclonedx.exception.factory

	cyclonedx.exception.model

	cyclonedx.exception.output

	cyclonedx.exception.serialization

	cyclonedx.factory
	cyclonedx.factory.license

	cyclonedx.model
	cyclonedx.model.bom

	cyclonedx.model.bom_ref

	cyclonedx.model.component

	cyclonedx.model.contact

	cyclonedx.model.crypto

	cyclonedx.model.dependency

	cyclonedx.model.impact_analysis

	cyclonedx.model.issue

	cyclonedx.model.license

	cyclonedx.model.release_note

	cyclonedx.model.service

	cyclonedx.model.vulnerability

	cyclonedx.output
	cyclonedx.output.json

	cyclonedx.output.xml

	cyclonedx.schema
	cyclonedx.schema.schema

	cyclonedx.serialization

	cyclonedx.validation
	cyclonedx.validation.json

	cyclonedx.validation.model

	cyclonedx.validation.xml

Submodules

	cyclonedx.spdx

 cyclonedx.exception

cyclonedx.exception

Exceptions that are specific to the CycloneDX library implementation.

Submodules

	cyclonedx.exception.factory

	cyclonedx.exception.model

	cyclonedx.exception.output

	cyclonedx.exception.serialization

Package Contents

	
exception cyclonedx.exception.CycloneDxException

	Bases: Exception

Root exception thrown by this library.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.MissingOptionalDependencyException

	Bases: CycloneDxException

Validation did not happen, due to missing dependencies.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 cyclonedx.exception.factory

cyclonedx.exception.factory

Exceptions relating to specific conditions that occur when factoring a model.

Module Contents

	
exception cyclonedx.exception.factory.CycloneDxFactoryException

	Bases: cyclonedx.exception.CycloneDxException

Base exception that covers all exceptions that may be thrown during model factoring..

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.factory.LicenseChoiceFactoryException

	Bases: CycloneDxFactoryException

Base exception that covers all LicenseChoiceFactory exceptions.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.factory.InvalidSpdxLicenseException

	Bases: LicenseChoiceFactoryException

Thrown when an invalid SPDX License is provided.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.factory.LicenseFactoryException

	Bases: CycloneDxFactoryException

Base exception that covers all LicenseFactory exceptions.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.factory.InvalidLicenseExpressionException

	Bases: LicenseFactoryException

Thrown when an invalid License expressions is provided.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 cyclonedx.exception.model

cyclonedx.exception.model

Exceptions relating to specific conditions that occur when modelling CycloneDX BOM.

Module Contents

Classes

	CycloneDxModelException

	Base exception that covers all exceptions that may be thrown during model creation.

	InvalidLocaleTypeException

	Raised when the supplied locale does not conform to ISO-639 specification.

	InvalidNistQuantumSecurityLevelException

	Raised when an invalid value is provided for an NIST Quantum Security Level

	InvalidOmniBorIdException

	Raised when a supplied value for an OmniBOR ID does not meet the format requirements

	InvalidRelatedCryptoMaterialSizeException

	Raised when the supplied size of a Related Crypto Material is negative.

	InvalidSwhidException

	Raised when a supplied value for an Swhid does not meet the format requirements

	InvalidUriException

	Raised when a str is provided that needs to be a valid URI, but isn't.

	MutuallyExclusivePropertiesException

	Raised when mutually exclusive properties are provided.

	NoPropertiesProvidedException

	Raised when attempting to construct a model class and providing NO values (where all properites are defined as

	UnknownComponentDependencyException

	Exception raised when a dependency has been noted for a Component that is NOT a Component BomRef in this Bom.

	UnknownHashTypeException

	Exception raised when we are unable to determine the type of hash from a composite hash string.

	LicenseExpressionAlongWithOthersException

	Exception raised when a LicenseExpression was detected along with other licenses.

	
class cyclonedx.exception.model.CycloneDxModelException

	Bases: cyclonedx.exception.CycloneDxException

Base exception that covers all exceptions that may be thrown during model creation.

	
class cyclonedx.exception.model.InvalidLocaleTypeException

	Bases: CycloneDxModelException

Raised when the supplied locale does not conform to ISO-639 specification.

	Good examples:
	
	en

	en-US

	en-GB

	fr

	fr-CA

The language code MUST be lowercase. If the country code is specified, the country code MUST be upper case.
The language code and country code MUST be separated by a minus sign.

	
class cyclonedx.exception.model.InvalidNistQuantumSecurityLevelException

	Bases: CycloneDxModelException

Raised when an invalid value is provided for an NIST Quantum Security Level
as defined at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
evaluation-criteria/security-(evaluation-criteria).

	
class cyclonedx.exception.model.InvalidOmniBorIdException

	Bases: CycloneDxModelException

Raised when a supplied value for an OmniBOR ID does not meet the format requirements
as defined at https://www.iana.org/assignments/uri-schemes/prov/gitoid.

	
class cyclonedx.exception.model.InvalidRelatedCryptoMaterialSizeException

	Bases: CycloneDxModelException

Raised when the supplied size of a Related Crypto Material is negative.

	
class cyclonedx.exception.model.InvalidSwhidException

	Bases: CycloneDxModelException

Raised when a supplied value for an Swhid does not meet the format requirements
as defined at https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html.

	
class cyclonedx.exception.model.InvalidUriException

	Bases: CycloneDxModelException

Raised when a str is provided that needs to be a valid URI, but isn’t.

	
class cyclonedx.exception.model.MutuallyExclusivePropertiesException

	Bases: CycloneDxModelException

Raised when mutually exclusive properties are provided.

	
class cyclonedx.exception.model.NoPropertiesProvidedException

	Bases: CycloneDxModelException

Raised when attempting to construct a model class and providing NO values (where all properites are defined as
Optional, but at least one is required).

	
class cyclonedx.exception.model.UnknownComponentDependencyException

	Bases: CycloneDxModelException

Exception raised when a dependency has been noted for a Component that is NOT a Component BomRef in this Bom.

	
class cyclonedx.exception.model.UnknownHashTypeException

	Bases: CycloneDxModelException

Exception raised when we are unable to determine the type of hash from a composite hash string.

	
class cyclonedx.exception.model.LicenseExpressionAlongWithOthersException

	Bases: CycloneDxModelException

Exception raised when a LicenseExpression was detected along with other licenses.
If a LicenseExpression exists, than it must stand alone.

See https://github.com/CycloneDX/specification/pull/205

 cyclonedx.exception.output

cyclonedx.exception.output

Exceptions that are for specific error scenarios during the output of a Model to a SBOM.

Module Contents

Classes

	BomGenerationErrorException

	Raised if there is an unknown error.

	FormatNotSupportedException

	Exception raised when attempting to output a BOM to a format not supported in the requested version.

	
class cyclonedx.exception.output.BomGenerationErrorException

	Bases: cyclonedx.exception.CycloneDxException

Raised if there is an unknown error.

	
class cyclonedx.exception.output.FormatNotSupportedException

	Bases: cyclonedx.exception.CycloneDxException

Exception raised when attempting to output a BOM to a format not supported in the requested version.

For example, JSON is not supported prior to 1.2.

 cyclonedx.exception.serialization

cyclonedx.exception.serialization

Exceptions relating to specific conditions that occur when (de)serializing/(de)normalizing CycloneDX BOM.

Module Contents

	
exception cyclonedx.exception.serialization.CycloneDxSerializationException

	Bases: cyclonedx.exception.CycloneDxException

Base exception that covers all exceptions that may be thrown during model serializing/normalizing.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.serialization.CycloneDxDeserializationException

	Bases: cyclonedx.exception.CycloneDxException

Base exception that covers all exceptions that may be thrown during model deserializing/denormalizing.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.serialization.SerializationOfUnsupportedComponentTypeException

	Bases: CycloneDxSerializationException

Raised when attempting serializing/normalizing a cyclonedx.model.component.Component
to a cyclonedx.schema.schema.BaseSchemaVersion
which does not support that cyclonedx.model.component.ComponentType
.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception cyclonedx.exception.serialization.SerializationOfUnexpectedValueException

	Bases: CycloneDxSerializationException, ValueError

Raised when attempting serializing/normalizing a type that is not expected there.

	
class args

	

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 cyclonedx.factory

cyclonedx.factory

Factories used in this library.

Submodules

	cyclonedx.factory.license

 cyclonedx.factory.license

cyclonedx.factory.license

Module Contents

Classes

	LicenseFactory

	Factory for cyclonedx.model.license.License.

	
class cyclonedx.factory.license.LicenseFactory

	Factory for cyclonedx.model.license.License.

	
make_from_string(value: str, *, license_text: cyclonedx.model.AttachedText | None = None, license_url: cyclonedx.model.XsUri | None = None, license_acknowledgement: cyclonedx.model.license.LicenseAcknowledgement | None = None) → cyclonedx.model.license.License

	Make a cyclonedx.model.license.License from a string.

	
make_with_expression(expression: str, *, acknowledgement: cyclonedx.model.license.LicenseAcknowledgement | None = None) → cyclonedx.model.license.LicenseExpression

	Make a cyclonedx.model.license.LicenseExpression with a compound expression.

Utilizes cyclonedx.spdx.is_compound_expression().

	Raises:

	InvalidLicenseExpressionException – if param value is not known/supported license expression

	
make_with_id(spdx_id: str, *, text: cyclonedx.model.AttachedText | None = None, url: cyclonedx.model.XsUri | None = None, acknowledgement: cyclonedx.model.license.LicenseAcknowledgement | None = None) → cyclonedx.model.license.DisjunctiveLicense

	Make a cyclonedx.model.license.DisjunctiveLicense from an SPDX-ID.

	Raises:

	InvalidSpdxLicenseException – if param spdx_id was not known/supported SPDX-ID

	
make_with_name(name: str, *, text: cyclonedx.model.AttachedText | None = None, url: cyclonedx.model.XsUri | None = None, acknowledgement: cyclonedx.model.license.LicenseAcknowledgement | None = None) → cyclonedx.model.license.DisjunctiveLicense

	Make a cyclonedx.model.license.DisjunctiveLicense with a name.

 cyclonedx.model

cyclonedx.model

Uniform set of models to represent objects within a CycloneDX software bill-of-materials.

You can either create a cyclonedx.model.bom.Bom yourself programmatically, or generate a cyclonedx.model.bom.Bom
from a cyclonedx.parser.BaseParser implementation.

Submodules

	cyclonedx.model.bom

	cyclonedx.model.bom_ref

	cyclonedx.model.component

	cyclonedx.model.contact

	cyclonedx.model.crypto

	cyclonedx.model.dependency

	cyclonedx.model.impact_analysis

	cyclonedx.model.issue

	cyclonedx.model.license

	cyclonedx.model.release_note

	cyclonedx.model.service

	cyclonedx.model.vulnerability

Package Contents

Classes

	DataFlow

	This is our internal representation of the dataFlowType simple type within the CycloneDX standard.

	DataClassification

	This is our internal representation of the dataClassificationType complex type within the CycloneDX standard.

	Encoding

	This is our internal representation of the encoding simple type within the CycloneDX standard.

	AttachedText

	This is our internal representation of the attachedTextType complex type within the CycloneDX standard.

	HashAlgorithm

	This is our internal representation of the hashAlg simple type within the CycloneDX standard.

	HashType

	This is our internal representation of the hashType complex type within the CycloneDX standard.

	ExternalReferenceType

	Enum object that defines the permissible 'types' for an External Reference according to the CycloneDX schema.

	XsUri

	Helper class that allows us to perform validation on data strings that are defined as xs:anyURI

	ExternalReference

	This is our internal representation of an ExternalReference complex type that can be used in multiple places within

	Property

	This is our internal representation of propertyType complex type that can be used in multiple places within

	NoteText

	This is our internal representation of the Note.text complex type that can be used in multiple places within

	Note

	This is our internal representation of the Note complex type that can be used in multiple places within

	Tool

	This is our internal representation of the toolType complex type within the CycloneDX standard.

	IdentifiableAction

	This is our internal representation of the identifiableActionType complex type.

	Copyright

	This is our internal representation of the copyrightsType complex type.

Attributes

	ThisTool

	

	
class cyclonedx.model.DataFlow

	Bases: str, enum.Enum

This is our internal representation of the dataFlowType simple type within the CycloneDX standard.

Note

See the CycloneDX Schema: https://cyclonedx.org/docs/1.4/xml/#type_dataFlowType

	
INBOUND = 'inbound'

	

	
OUTBOUND = 'outbound'

	

	
BI_DIRECTIONAL = 'bi-directional'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.DataClassification(*, flow: DataFlow, classification: str)

	This is our internal representation of the dataClassificationType complex type within the CycloneDX standard.

DataClassification might be deprecated since CycloneDX 1.5, but it is not deprecated in this library.
In fact, this library will try to provide a compatibility layer if needed.

Note

See the CycloneDX Schema for dataClassificationType:
https://cyclonedx.org/docs/1.4/xml/#type_dataClassificationType

	
property flow: DataFlow

	Specifies the flow direction of the data.

Valid values are: inbound, outbound, bi-directional, and unknown.

Direction is relative to the service.

	Inbound flow states that data enters the service

	Outbound flow states that data leaves the service

	Bi-directional states that data flows both ways

	Unknown states that the direction is not known

	Returns:
	DataFlow

	
property classification: str

	Data classification tags data according to its type, sensitivity, and value if altered, stolen, or destroyed.

	Returns:
	str

	
class cyclonedx.model.Encoding

	Bases: str, enum.Enum

This is our internal representation of the encoding simple type within the CycloneDX standard.

Note

See the CycloneDX Schema: https://cyclonedx.org/docs/1.4/#type_encoding

	
BASE_64 = 'base64'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.AttachedText(*, content: str, content_type: str = DEFAULT_CONTENT_TYPE, encoding: Encoding | None = None)

	This is our internal representation of the attachedTextType complex type within the CycloneDX standard.

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.3/#type_attachedTextType

	
property content_type: str

	Specifies the content type of the text. Defaults to text/plain if not specified.

	Returns:
	str

	
property encoding: Encoding | None

	Specifies the optional encoding the text is represented in.

	Returns:
	Encoding if set else None

	
property content: str

	The attachment data.

Proactive controls such as input validation and sanitization should be employed to prevent misuse of attachment
text.

	Returns:
	str

	
DEFAULT_CONTENT_TYPE = 'text/plain'

	

	
class cyclonedx.model.HashAlgorithm

	Bases: str, enum.Enum

This is our internal representation of the hashAlg simple type within the CycloneDX standard.

Note

See the CycloneDX Schema: https://cyclonedx.org/docs/1.3/#type_hashAlg

	
BLAKE2B_256 = 'BLAKE2b-256'

	

	
BLAKE2B_384 = 'BLAKE2b-384'

	

	
BLAKE2B_512 = 'BLAKE2b-512'

	

	
BLAKE3 = 'BLAKE3'

	

	
MD5 = 'MD5'

	

	
SHA_1 = 'SHA-1'

	

	
SHA_256 = 'SHA-256'

	

	
SHA_384 = 'SHA-384'

	

	
SHA_512 = 'SHA-512'

	

	
SHA3_256 = 'SHA3-256'

	

	
SHA3_384 = 'SHA3-384'

	

	
SHA3_512 = 'SHA3-512'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.HashType(*, alg: HashAlgorithm, content: str)

	This is our internal representation of the hashType complex type within the CycloneDX standard.

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.3/#type_hashType

	
property alg: HashAlgorithm

	Specifies the algorithm used to create the hash.

	Returns:
	HashAlgorithm

	
property content: str

	Hash value content.

	Returns:
	str

	
static from_hashlib_alg(hashlib_alg: str, content: str) → HashType

	Attempts to convert a hashlib-algorithm to our internal model classes.

	Args:
	

	hashlib_alg:
	Hash algorith - like it is used by hashlib.
Example: sha256.

	content:
	Hash value.

	Raises:
	UnknownHashTypeException if the algorithm of hash cannot be determined.

	Returns:
	An instance of HashType.

	
static from_composite_str(composite_hash: str) → HashType

	Attempts to convert a string which includes both the Hash Algorithm and Hash Value and represent using our
internal model classes.

	Args:
	
	composite_hash:
	Composite Hash string of the format HASH_ALGORITHM:HASH_VALUE.
Example: sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b.

	Raises:
	UnknownHashTypeException if the type of hash cannot be determined.

	Returns:
	An instance of HashType.

	
class cyclonedx.model.ExternalReferenceType

	Bases: str, enum.Enum

Enum object that defines the permissible ‘types’ for an External Reference according to the CycloneDX schema.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.3/#type_externalReferenceType

	
ADVERSARY_MODEL = 'adversary-model'

	

	
ADVISORIES = 'advisories'

	

	
ATTESTATION = 'attestation'

	

	
BOM = 'bom'

	

	
BUILD_META = 'build-meta'

	

	
BUILD_SYSTEM = 'build-system'

	

	
CERTIFICATION_REPORT = 'certification-report'

	

	
CHAT = 'chat'

	

	
CODIFIED_INFRASTRUCTURE = 'codified-infrastructure'

	

	
COMPONENT_ANALYSIS_REPORT = 'component-analysis-report'

	

	
CONFIGURATION = 'configuration'

	

	
DIGITAL_SIGNATURE = 'digital-signature'

	

	
DISTRIBUTION = 'distribution'

	

	
DISTRIBUTION_INTAKE = 'distribution-intake'

	

	
DOCUMENTATION = 'documentation'

	

	
DYNAMIC_ANALYSIS_REPORT = 'dynamic-analysis-report'

	

	
ELECTRONIC_SIGNATURE = 'electronic-signature'

	

	
EVIDENCE = 'evidence'

	

	
EXPLOITABILITY_STATEMENT = 'exploitability-statement'

	

	
FORMULATION = 'formulation'

	

	
ISSUE_TRACKER = 'issue-tracker'

	

	
LICENSE = 'license'

	

	
LOG = 'log'

	

	
MAILING_LIST = 'mailing-list'

	

	
MATURITY_REPORT = 'maturity-report'

	

	
MODEL_CARD = 'model-card'

	

	
PENTEST_REPORT = 'pentest-report'

	

	
POAM = 'poam'

	

	
QUALITY_METRICS = 'quality-metrics'

	

	
RELEASE_NOTES = 'release-notes'

	

	
RFC_9166 = 'rfc-9116'

	

	
RISK_ASSESSMENT = 'risk-assessment'

	

	
RUNTIME_ANALYSIS_REPORT = 'runtime-analysis-report'

	

	
SECURITY_CONTACT = 'security-contact'

	

	
STATIC_ANALYSIS_REPORT = 'static-analysis-report'

	

	
SOCIAL = 'social'

	

	
SOURCE_DISTRIBUTION = 'source-distribution'

	

	
SCM = 'vcs'

	

	
SUPPORT = 'support'

	

	
THREAT_MODEL = 'threat-model'

	

	
VCS = 'vcs'

	

	
VULNERABILITY_ASSERTION = 'vulnerability-assertion'

	

	
WEBSITE = 'website'

	

	
OTHER = 'other'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.XsUri(uri: str)

	Bases: serializable.helpers.BaseHelper

Helper class that allows us to perform validation on data strings that are defined as xs:anyURI
in CycloneDX schema.

Developers can just use this via str(XsUri(‘https://www.google.com’)).

Note

See XSD definition for xsd:anyURI: http://www.datypic.com/sc/xsd/t-xsd_anyURI.html
See JSON Schema definition for iri-reference: https://tools.ietf.org/html/rfc3987

	
property uri: str

	

	
classmethod serialize(o: Any) → str

	

	
classmethod deserialize(o: Any) → XsUri

	

	
class cyclonedx.model.ExternalReference(*, type: ExternalReferenceType, url: XsUri, comment: str | None = None, hashes: Iterable[HashType] | None = None)

	This is our internal representation of an ExternalReference complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.3/#type_externalReference

	
property url: XsUri

	The URL to the external reference.

	Returns:
	XsUri

	
property comment: str | None

	An optional comment describing the external reference.

	Returns:
	str if set else None

	
property type: ExternalReferenceType

	Specifies the type of external reference.

There are built-in types to describe common references. If a type does not exist for the reference being
referred to, use the “other” type.

	Returns:
	ExternalReferenceType

	
property hashes: SortedSet[HashType]

	The hashes of the external reference (if applicable).

	Returns:
	Set of HashType

	
class cyclonedx.model.Property(*, name: str, value: str)

	This is our internal representation of propertyType complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_propertyType

Specifies an individual property with a name and value.

	
property name: str

	The name of the property.

Duplicate names are allowed, each potentially having a different value.

	Returns:
	str

	
property value: str

	Value of this Property.

	Returns:
	str

	
class cyclonedx.model.NoteText(*, content: str, content_type: str | None = None, encoding: Encoding | None = None)

	This is our internal representation of the Note.text complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_releaseNotesType

	
property content: str

	Get the text content of this Note.

	Returns:
	str note content

	
property content_type: str | None

	Get the content-type of this Note.

Defaults to ‘text/plain’ if one was not explicitly specified.

	Returns:
	str content-type

	
property encoding: Encoding | None

	Get the encoding method used for the note’s content.

	Returns:
	Encoding if set else None

	
DEFAULT_CONTENT_TYPE: str = 'text/plain'

	

	
class cyclonedx.model.Note(*, text: NoteText, locale: str | None = None)

	This is our internal representation of the Note complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_releaseNotesType

@todo: Replace NoteText with AttachedText?

	
property text: NoteText

	Specifies the full content of the release note.

	Returns:
	NoteText

	
property locale: str | None

	Get the ISO locale of this Note.

The ISO-639 (or higher) language code and optional ISO-3166 (or higher) country code.

Examples include: “en”, “en-US”, “fr” and “fr-CA”.

	Returns:
	str locale if set else None

	
class cyclonedx.model.Tool(*, vendor: str | None = None, name: str | None = None, version: str | None = None, hashes: Iterable[HashType] | None = None, external_references: Iterable[ExternalReference] | None = None)

	This is our internal representation of the toolType complex type within the CycloneDX standard.

Tool(s) are the things used in the creation of the CycloneDX document.

Tool might be deprecated since CycloneDX 1.5, but it is not deprecated in this library.
In fact, this library will try to provide a compatibility layer if needed.

Note

See the CycloneDX Schema for toolType: https://cyclonedx.org/docs/1.3/#type_toolType

	
property vendor: str | None

	The name of the vendor who created the tool.

	Returns:
	str if set else None

	
property name: str | None

	The name of the tool.

	Returns:
	str if set else None

	
property version: str | None

	The version of the tool.

	Returns:
	str if set else None

	
property hashes: SortedSet[HashType]

	The hashes of the tool (if applicable).

	Returns:
	Set of HashType

	
property external_references: SortedSet[ExternalReference]

	External References provides a way to document systems, sites, and information that may be relevant but which
are not included with the BOM.

	Returns:
	Set of ExternalReference

	
class cyclonedx.model.IdentifiableAction(*, timestamp: datetime.datetime | None = None, name: str | None = None, email: str | None = None)

	This is our internal representation of the identifiableActionType complex type.

Note

See the CycloneDX specification: https://cyclonedx.org/docs/1.4/xml/#type_identifiableActionType

	
property timestamp: datetime.datetime | None

	The timestamp in which the action occurred.

	Returns:
	datetime if set else None

	
property name: str | None

	The name of the individual who performed the action.

	Returns:
	str if set else None

	
property email: str | None

	The email address of the individual who performed the action.

	Returns:
	str if set else None

	
class cyclonedx.model.Copyright(*, text: str)

	This is our internal representation of the copyrightsType complex type.

Note

See the CycloneDX specification: https://cyclonedx.org/docs/1.4/xml/#type_copyrightsType

	
property text: str

	Copyright statement.

	Returns:
	str if set else None

	
cyclonedx.model.ThisTool

	

 cyclonedx.model.bom

cyclonedx.model.bom

Module Contents

Classes

	BomMetaData

	This is our internal representation of the metadata complex type within the CycloneDX standard.

	Bom

	This is our internal representation of a bill-of-materials (BOM).

	
class cyclonedx.model.bom.BomMetaData(*, tools: Iterable[cyclonedx.model.Tool] | None = None, authors: Iterable[cyclonedx.model.contact.OrganizationalContact] | None = None, component: cyclonedx.model.component.Component | None = None, supplier: cyclonedx.model.contact.OrganizationalEntity | None = None, licenses: Iterable[cyclonedx.model.license.License] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None, timestamp: datetime.datetime | None = None, manufacturer: cyclonedx.model.contact.OrganizationalEntity | None = None, manufacture: cyclonedx.model.contact.OrganizationalEntity | None = None)

	This is our internal representation of the metadata complex type within the CycloneDX standard.

Note

See the CycloneDX Schema for Bom metadata: https://cyclonedx.org/docs/1.5/#type_metadata

	
property timestamp: datetime.datetime

	The date and time (in UTC) when this BomMetaData was created.

	Returns:
	datetime instance in UTC timezone

	
property tools: SortedSet[Tool]

	Tools used to create this BOM.

	Returns:
	Set of Tool objects.

	
property authors: SortedSet[OrganizationalContact]

	The person(s) who created the BOM.

Authors are common in BOMs created through manual processes.

BOMs created through automated means may not have authors.

	Returns:
	Set of OrganizationalContact

	
property component: cyclonedx.model.component.Component | None

	The (optional) component that the BOM describes.

	Returns:
	cyclonedx.model.component.Component instance for this Bom Metadata.

	
property manufacture: cyclonedx.model.contact.OrganizationalEntity | None

	The organization that manufactured the component that the BOM describes.

	Returns:
	OrganizationalEntity if set else None

	
property manufacturer: cyclonedx.model.contact.OrganizationalEntity | None

	The organization that created the BOM.
Manufacturer is common in BOMs created through automated processes. BOMs created through manual means may have
@.authors instead.

	Returns:
	OrganizationalEntity if set else None

	
property supplier: cyclonedx.model.contact.OrganizationalEntity | None

	The organization that supplied the component that the BOM describes.

The supplier may often be the manufacturer, but may also be a distributor or repackager.

	Returns:
	OrganizationalEntity if set else None

	
property licenses: cyclonedx.model.license.LicenseRepository

	A optional list of statements about how this BOM is licensed.

	Returns:
	Set of LicenseChoice

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a key/value store. This provides flexibility to include data not
officially supported in the standard without having to use additional namespaces or create extensions.

Property names of interest to the general public are encouraged to be registered in the CycloneDX Property
Taxonomy - https://github.com/CycloneDX/cyclonedx-property-taxonomy. Formal registration is OPTIONAL.

	Return:
	Set of Property

	
class cyclonedx.model.bom.Bom(*, components: Iterable[cyclonedx.model.component.Component] | None = None, services: Iterable[cyclonedx.model.service.Service] | None = None, external_references: Iterable[cyclonedx.model.ExternalReference] | None = None, serial_number: uuid.UUID | None = None, version: int = 1, metadata: BomMetaData | None = None, dependencies: Iterable[cyclonedx.model.dependency.Dependency] | None = None, vulnerabilities: Iterable[cyclonedx.model.vulnerability.Vulnerability] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None)

	This is our internal representation of a bill-of-materials (BOM).

Once you have an instance of cyclonedx.model.bom.Bom, you can pass this to an instance of
cyclonedx.output.BaseOutput to produce a CycloneDX document according to a specific schema version and format.

	
property serial_number: uuid.UUID

	Unique UUID for this BOM

	Returns:
	UUID instance
UUID instance

	
property version: int

	

	
property metadata: BomMetaData

	Get our internal metadata object for this Bom.

	Returns:
	Metadata object instance for this Bom.

Note

See the CycloneDX Schema for Bom metadata: https://cyclonedx.org/docs/1.3/#type_metadata

	
property components: SortedSet[Component]

	Get all the Components currently in this Bom.

	Returns:
	Set of Component in this Bom

	
property services: SortedSet[Service]

	Get all the Services currently in this Bom.

	Returns:
	Set of Service in this BOM

	
property external_references: SortedSet[ExternalReference]

	Provides the ability to document external references related to the BOM or to the project the BOM describes.

	Returns:
	Set of ExternalReference

	
property dependencies: SortedSet[Dependency]

	

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a name/value store. This provides flexibility to include data
not officially supported in the standard without having to use additional namespaces or create extensions.
Property names of interest to the general public are encouraged to be registered in the CycloneDX Property
Taxonomy - https://github.com/CycloneDX/cyclonedx-property-taxonomy. Formal registration is OPTIONAL.

	Return:
	Set of Property

	
property vulnerabilities: SortedSet[Vulnerability]

	Get all the Vulnerabilities in this BOM.

	Returns:
	Set of Vulnerability

	
get_component_by_purl(purl: packageurl.PackageURL | None) → cyclonedx.model.component.Component | None

	Get a Component already in the Bom by its PURL

	Args:
	
	purl:
	An instance of packageurl.PackageURL to look and find Component.

	Returns:
	Component or None

	
get_urn_uuid() → str

	Get the unique reference for this Bom.

	Returns:
	URN formatted UUID that uniquely identified this Bom instance.

	
has_component(component: cyclonedx.model.component.Component) → bool

	Check whether this Bom contains the provided Component.

	Args:
	
	component:
	The instance of cyclonedx.model.component.Component to check if this Bom contains.

	Returns:
	bool - True if the supplied Component is part of this Bom, False otherwise.

	
get_vulnerabilities_for_bom_ref(bom_ref: cyclonedx.model.bom_ref.BomRef) → SortedSet[Vulnerability]

	Get all known Vulnerabilities that affect the supplied bom_ref.

	Args:
	bom_ref: BomRef

	Returns:
	SortedSet of Vulnerability

	
has_vulnerabilities() → bool

	Check whether this Bom has any declared vulnerabilities.

	Returns:
	bool - True if this Bom has at least one Vulnerability, False otherwise.

	
register_dependency(target: cyclonedx.model.dependency.Dependable, depends_on: Iterable[cyclonedx.model.dependency.Dependable] | None = None) → None

	

	
urn() → str

	

	
validate() → bool

	Perform data-model level validations to make sure we have some known data integrity prior to attempting output
of this Bom

	Returns:
	bool

 cyclonedx.model.bom_ref

cyclonedx.model.bom_ref

Module Contents

Classes

	BomRef

	An identifier that can be used to reference objects elsewhere in the BOM.

	
class cyclonedx.model.bom_ref.BomRef(value: str | None = None)

	An identifier that can be used to reference objects elsewhere in the BOM.

This copies a similar pattern used in the CycloneDX PHP Library.

Note

See https://github.com/CycloneDX/cyclonedx-php-library/blob/master/docs/dev/decisions/BomDependencyDataModel.md

	
property value: str | None

	

 cyclonedx.model.component

cyclonedx.model.component

Module Contents

Classes

	Commit

	Our internal representation of the commitType complex type.

	ComponentEvidence

	Our internal representation of the componentEvidenceType complex type.

	ComponentScope

	Enum object that defines the permissable 'scopes' for a Component according to the CycloneDX schema.

	ComponentType

	Enum object that defines the permissible 'types' for a Component according to the CycloneDX schema.

	Diff

	Our internal representation of the diffType complex type.

	PatchClassification

	Enum object that defines the permissible `patchClassification`s.

	Patch

	Our internal representation of the patchType complex type.

	Pedigree

	Our internal representation of the pedigreeType complex type.

	Swid

	Our internal representation of the swidType complex type.

	OmniborId

	Helper class that allows us to perform validation on data strings that must conform to

	Swhid

	Helper class that allows us to perform validation on data strings that must conform to

	Component

	This is our internal representation of a Component within a Bom.

	
class cyclonedx.model.component.Commit(*, uid: str | None = None, url: cyclonedx.model.XsUri | None = None, author: cyclonedx.model.IdentifiableAction | None = None, committer: cyclonedx.model.IdentifiableAction | None = None, message: str | None = None)

	Our internal representation of the commitType complex type.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_commitType

	
property uid: str | None

	A unique identifier of the commit. This may be version control specific. For example, Subversion uses revision
numbers whereas git uses commit hashes.

	Returns:
	str if set else None

	
property url: cyclonedx.model.XsUri | None

	The URL to the commit. This URL will typically point to a commit in a version control system.

	Returns:
	XsUri if set else None

	
property author: cyclonedx.model.IdentifiableAction | None

	The author who created the changes in the commit.

	Returns:
	IdentifiableAction if set else None

	
property committer: cyclonedx.model.IdentifiableAction | None

	The person who committed or pushed the commit

	Returns:
	IdentifiableAction if set else None

	
property message: str | None

	The text description of the contents of the commit.

	Returns:
	str if set else None

	
class cyclonedx.model.component.ComponentEvidence(*, licenses: Iterable[cyclonedx.model.license.License] | None = None, copyright: Iterable[cyclonedx.model.Copyright] | None = None)

	Our internal representation of the componentEvidenceType complex type.

Provides the ability to document evidence collected through various forms of extraction or analysis.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_componentEvidenceType

	
property licenses: cyclonedx.model.license.LicenseRepository

	Optional list of licenses obtained during analysis.

	Returns:
	Set of LicenseChoice

	
property copyright: SortedSet[Copyright]

	Optional list of copyright statements.

	Returns:
	Set of Copyright

	
class cyclonedx.model.component.ComponentScope

	Bases: str, enum.Enum

Enum object that defines the permissable ‘scopes’ for a Component according to the CycloneDX schema.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.3/#type_scope

	
REQUIRED = 'required'

	

	
OPTIONAL = 'optional'

	

	
EXCLUDED = 'excluded'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.component.ComponentType

	Bases: str, enum.Enum

Enum object that defines the permissible ‘types’ for a Component according to the CycloneDX schema.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.3/#type_classification

	
APPLICATION = 'application'

	

	
CONTAINER = 'container'

	

	
CRYPTOGRAPHIC_ASSET = 'cryptographic-asset'

	

	
DATA = 'data'

	

	
DEVICE = 'device'

	

	
DEVICE_DRIVER = 'device-driver'

	

	
FILE = 'file'

	

	
FIRMWARE = 'firmware'

	

	
FRAMEWORK = 'framework'

	

	
LIBRARY = 'library'

	

	
MACHINE_LEARNING_MODEL = 'machine-learning-model'

	

	
OPERATING_SYSTEM = 'operating-system'

	

	
PLATFORM = 'platform'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.component.Diff(*, text: cyclonedx.model.AttachedText | None = None, url: cyclonedx.model.XsUri | None = None)

	Our internal representation of the diffType complex type.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_diffType

	
property text: cyclonedx.model.AttachedText | None

	Specifies the optional text of the diff.

	Returns:
	AttachedText if set else None

	
property url: cyclonedx.model.XsUri | None

	Specifies the URL to the diff.

	Returns:
	XsUri if set else None

	
class cyclonedx.model.component.PatchClassification

	Bases: str, enum.Enum

Enum object that defines the permissible `patchClassification`s.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_patchClassification

	
BACKPORT = 'backport'

	

	
CHERRY_PICK = 'cherry-pick'

	

	
MONKEY = 'monkey'

	

	
UNOFFICIAL = 'unofficial'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.component.Patch(*, type: PatchClassification, diff: Diff | None = None, resolves: Iterable[cyclonedx.model.issue.IssueType] | None = None)

	Our internal representation of the patchType complex type.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_patchType

	
property type: PatchClassification

	Specifies the purpose for the patch including the resolution of defects, security issues, or new behavior or
functionality.

	Returns:
	PatchClassification

	
property diff: Diff | None

	The patch file (or diff) that show changes.

Note

Refer to https://en.wikipedia.org/wiki/Diff.

	Returns:
	Diff if set else None

	
property resolves: SortedSet[IssueType]

	Optional list of issues resolved by this patch.

	Returns:
	Set of IssueType

	
class cyclonedx.model.component.Pedigree(*, ancestors: Iterable[Component] | None = None, descendants: Iterable[Component] | None = None, variants: Iterable[Component] | None = None, commits: Iterable[Commit] | None = None, patches: Iterable[Patch] | None = None, notes: str | None = None)

	Our internal representation of the pedigreeType complex type.

Component pedigree is a way to document complex supply chain scenarios where components are created, distributed,
modified, redistributed, combined with other components, etc. Pedigree supports viewing this complex chain from the
beginning, the end, or anywhere in the middle. It also provides a way to document variants where the exact relation
may not be known.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_pedigreeType

	
property ancestors: SortedSet['Component']

	Describes zero or more components in which a component is derived from. This is commonly used to describe forks
from existing projects where the forked version contains a ancestor node containing the original component it
was forked from.

For example, Component A is the original component. Component B is the component being used and documented in
the BOM. However, Component B contains a pedigree node with a single ancestor documenting Component A - the
original component from which Component B is derived from.

	Returns:
	Set of Component

	
property descendants: SortedSet['Component']

	Descendants are the exact opposite of ancestors. This provides a way to document all forks (and their forks) of
an original or root component.

	Returns:
	Set of Component

	
property variants: SortedSet['Component']

	Variants describe relations where the relationship between the components are not known. For example, if
Component A contains nearly identical code to Component B. They are both related, but it is unclear if one is
derived from the other, or if they share a common ancestor.

	Returns:
	Set of Component

	
property commits: SortedSet[Commit]

	A list of zero or more commits which provide a trail describing how the component deviates from an ancestor,
descendant, or variant.

	Returns:
	Set of Commit

	
property patches: SortedSet[Patch]

	A list of zero or more patches describing how the component deviates from an ancestor, descendant, or variant.
Patches may be complimentary to commits or may be used in place of commits.

	Returns:
	Set of Patch

	
property notes: str | None

	Notes, observations, and other non-structured commentary describing the components pedigree.

	Returns:
	str if set else None

	
class cyclonedx.model.component.Swid(*, tag_id: str, name: str, version: str | None = None, tag_version: int | None = None, patch: bool | None = None, text: cyclonedx.model.AttachedText | None = None, url: cyclonedx.model.XsUri | None = None)

	Our internal representation of the swidType complex type.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_swidType

	
property tag_id: str

	Maps to the tagId of a SoftwareIdentity.

	Returns:
	str

	
property name: str

	Maps to the name of a SoftwareIdentity.

	Returns:
	str

	
property version: str | None

	Maps to the version of a SoftwareIdentity.

	Returns:
	str if set else None.

	
property tag_version: int | None

	Maps to the tagVersion of a SoftwareIdentity.

	Returns:
	int if set else None

	
property patch: bool | None

	Maps to the patch of a SoftwareIdentity.

	Returns:
	bool if set else None

	
property text: cyclonedx.model.AttachedText | None

	Specifies the full content of the SWID tag.

	Returns:
	AttachedText if set else None

	
property url: cyclonedx.model.XsUri | None

	The URL to the SWID file.

	Returns:
	XsUri if set else None

	
class cyclonedx.model.component.OmniborId(id: str)

	Bases: serializable.helpers.BaseHelper

Helper class that allows us to perform validation on data strings that must conform to
https://www.iana.org/assignments/uri-schemes/prov/gitoid.

	
property id: str

	

	
classmethod serialize(o: Any) → str

	

	
classmethod deserialize(o: Any) → OmniborId

	

	
class cyclonedx.model.component.Swhid(id: str)

	Bases: serializable.helpers.BaseHelper

Helper class that allows us to perform validation on data strings that must conform to
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html.

	
property id: str

	

	
classmethod serialize(o: Any) → str

	

	
classmethod deserialize(o: Any) → Swhid

	

	
class cyclonedx.model.component.Component(*, name: str, type: ComponentType = ComponentType.LIBRARY, mime_type: str | None = None, bom_ref: str | cyclonedx.model.bom_ref.BomRef | None = None, supplier: cyclonedx.model.contact.OrganizationalEntity | None = None, publisher: str | None = None, group: str | None = None, version: str | None = None, description: str | None = None, scope: ComponentScope | None = None, hashes: Iterable[cyclonedx.model.HashType] | None = None, licenses: Iterable[cyclonedx.model.license.License] | None = None, copyright: str | None = None, purl: packageurl.PackageURL | None = None, external_references: Iterable[cyclonedx.model.ExternalReference] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None, release_notes: cyclonedx.model.release_note.ReleaseNotes | None = None, cpe: str | None = None, swid: Swid | None = None, pedigree: Pedigree | None = None, components: Iterable[Component] | None = None, evidence: ComponentEvidence | None = None, modified: bool = False, manufacturer: cyclonedx.model.contact.OrganizationalEntity | None = None, authors: Iterable[cyclonedx.model.contact.OrganizationalContact] | None = None, omnibor_ids: Iterable[OmniborId] | None = None, swhids: Iterable[Swhid] | None = None, crypto_properties: cyclonedx.model.crypto.CryptoProperties | None = None, tags: Iterable[str] | None = None, author: str | None = None)

	Bases: cyclonedx.model.dependency.Dependable

This is our internal representation of a Component within a Bom.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.3/#type_component

	
property type: ComponentType

	Get the type of this Component.

	Returns:
	Declared type of this Component as ComponentType.

	
property mime_type: str | None

	Get any declared mime-type for this Component.

When used on file components, the mime-type can provide additional context about the kind of file being
represented such as an image, font, or executable. Some library or framework components may also have an
associated mime-type.

	Returns:
	str if set else None

	
property bom_ref: cyclonedx.model.bom_ref.BomRef

	An optional identifier which can be used to reference the component elsewhere in the BOM. Every bom-ref MUST be
unique within the BOM.

If a value was not provided in the constructor, a UUIDv4 will have been assigned.

	Returns:
	BomRef

	
property supplier: cyclonedx.model.contact.OrganizationalEntity | None

	The organization that supplied the component. The supplier may often be the manufacture, but may also be a
distributor or repackager.

	Returns:
	OrganizationalEntity if set else None

	
property manufacturer: cyclonedx.model.contact.OrganizationalEntity | None

	The organization that created the component.
Manufacturer is common in components created through automated processes.
Components created through manual means may have @.authors instead.

	Returns:
	OrganizationalEntity if set else None

	
property authors: SortedSet[OrganizationalContact]

	The person(s) who created the component.
Authors are common in components created through manual processes.
Components created through automated means may have @.manufacturer instead.

	Returns:
	Iterable[OrganizationalContact] if set else None

	
property author: str | None

	The person(s) or organization(s) that authored the component.

	Returns:
	str if set else None

	
property publisher: str | None

	The person(s) or organization(s) that published the component

	Returns:
	str if set else None

	
property group: str | None

	The grouping name or identifier. This will often be a shortened, single name of the company or project that
produced the component, or the source package or domain name. Whitespace and special characters should be
avoided.

Examples include: apache, org.apache.commons, and apache.org.

	Returns:
	str if set else None

	
property name: str

	The name of the component.

This will often be a shortened, single name of the component.

Examples: commons-lang3 and jquery.

	Returns:
	str

	
property version: str | None

	The component version. The version should ideally comply with semantic versioning but is not enforced.

This is NOT optional for CycloneDX Schema Version < 1.4 but was agreed to default to an empty string where a
version was not supplied for schema versions < 1.4

	Returns:
	Declared version of this Component as str or None

	
property description: str | None

	Get the description of this Component.

	Returns:
	str if set, else None.

	
property scope: ComponentScope | None

	Specifies the scope of the component.

If scope is not specified, ‘required’ scope should be assumed by the consumer of the BOM.

	Returns:
	ComponentScope or None

	
property hashes: SortedSet[HashType]

	Optional list of hashes that help specify the integrity of this Component.

	Returns:
	Set of HashType

	
property licenses: cyclonedx.model.license.LicenseRepository

	A optional list of statements about how this Component is licensed.

	Returns:
	Set of LicenseChoice

	
property copyright: str | None

	An optional copyright notice informing users of the underlying claims to copyright ownership in a published
work.

	Returns:
	str or None

	
property cpe: str | None

	Specifies a well-formed CPE name that conforms to the CPE 2.2 or 2.3 specification.
See https://nvd.nist.gov/products/cpe

	Returns:
	str if set else None

	
property purl: packageurl.PackageURL | None

	Specifies the package-url (PURL).

The purl, if specified, must be valid and conform to the specification defined at:
https://github.com/package-url/purl-spec

	Returns:
	PackageURL or None

	
property omnibor_ids: SortedSet[OmniborId]

	Specifies the OmniBOR Artifact ID. The OmniBOR, if specified, MUST be valid and conform to the specification
defined at: https://www.iana.org/assignments/uri-schemes/prov/gitoid

	Returns:
	Iterable[str] or None

	
property swhids: SortedSet[Swhid]

	Specifies the Software Heritage persistent identifier (SWHID). The SWHID, if specified, MUST be valid and
conform to the specification defined at:
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

	Returns:
	Iterable[Swhid] if set else None

	
property swid: Swid | None

	Specifies metadata and content for ISO-IEC 19770-2 Software Identification (SWID) Tags.

	Returns:
	Swid if set else None

	
property modified: bool

	

	
property pedigree: Pedigree | None

	Component pedigree is a way to document complex supply chain scenarios where components are created,
distributed, modified, redistributed, combined with other components, etc.

	Returns:
	Pedigree if set else None

	
property external_references: SortedSet[ExternalReference]

	Provides the ability to document external references related to the component or to the project the component
describes.

	Returns:
	Set of ExternalReference

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a key/value store. This provides flexibility to include data not
officially supported in the standard without having to use additional namespaces or create extensions.

	Return:
	Set of Property

	
property components: SortedSet['Component']

	A list of software and hardware components included in the parent component. This is not a dependency tree. It
provides a way to specify a hierarchical representation of component assemblies, similar to system -> subsystem
-> parts assembly in physical supply chains.

	Returns:
	Set of Component

	
property evidence: ComponentEvidence | None

	Provides the ability to document evidence collected through various forms of extraction or analysis.

	Returns:
	ComponentEvidence if set else None

	
property release_notes: cyclonedx.model.release_note.ReleaseNotes | None

	Specifies optional release notes.

	Returns:
	ReleaseNotes or None

	
property crypto_properties: cyclonedx.model.crypto.CryptoProperties | None

	Cryptographic assets have properties that uniquely define them and that make them actionable for further
reasoning. As an example, it makes a difference if one knows the algorithm family (e.g. AES) or the specific
variant or instantiation (e.g. AES-128-GCM). This is because the security level and the algorithm primitive
(authenticated encryption) is only defined by the definition of the algorithm variant. The presence of a weak
cryptographic algorithm like SHA1 vs. HMAC-SHA1 also makes a difference.

	Returns:
	CryptoProperties or None

	
property tags: SortedSet[str]

	Textual strings that aid in discovery, search, and retrieval of the associated object.
Tags often serve as a way to group or categorize similar or related objects by various attributes.

	Returns:
	Iterable[str]

	
static for_file(absolute_file_path: str, path_for_bom: str | None) → Component

	Helper method to create a Component that represents the provided local file as a Component.

	Args:
	
	absolute_file_path:
	Absolute path to the file you wish to represent

	path_for_bom:
	Optionally, if supplied this is the path that will be used to identify the file in the BOM

	Returns:
	Component representing the supplied file

	
get_all_nested_components(include_self: bool = False) → Set[Component]

	

	
get_pypi_url() → str

	

 cyclonedx.model.contact

cyclonedx.model.contact

Module Contents

Classes

	PostalAddress

	This is our internal representation of the postalAddressType complex type that can be used in multiple places

	OrganizationalContact

	This is our internal representation of the organizationalContact complex type that can be used in multiple places

	OrganizationalEntity

	This is our internal representation of the organizationalEntity complex type that can be used in multiple places

	
class cyclonedx.model.contact.PostalAddress(*, bom_ref: str | cyclonedx.model.bom_ref.BomRef | None = None, country: str | None = None, region: str | None = None, locality: str | None = None, post_office_box_number: str | None = None, postal_code: str | None = None, street_address: str | None = None)

	This is our internal representation of the postalAddressType complex type that can be used in multiple places
within a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.6/xml/#type_postalAddressType

	
property bom_ref: cyclonedx.model.bom_ref.BomRef | None

	An optional identifier which can be used to reference the component elsewhere in the BOM. Every bom-ref MUST be
unique within the BOM.

If a value was not provided in the constructor, a UUIDv4 will have been assigned.

	Returns:
	BomRef

	
property country: str | None

	The country name or the two-letter ISO 3166-1 country code.

	Returns:
	str or None

	
property region: str | None

	The region or state in the country. For example, Texas.

	Returns:
	str or None

	
property locality: str | None

	The locality or city within the country. For example, Austin.

	Returns:
	str or None

	
property post_office_box_number: str | None

	The post office box number. For example, 901.

	Returns:
	str or None

	
property postal_code: str | None

	The postal code. For example, 78758.

	Returns:
	str or None

	
property street_address: str | None

	The street address. For example, 100 Main Street.

	Returns:
	str or None

	
class cyclonedx.model.contact.OrganizationalContact(*, name: str | None = None, phone: str | None = None, email: str | None = None)

	This is our internal representation of the organizationalContact complex type that can be used in multiple places
within a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_organizationalContact

	
property name: str | None

	Get the name of the contact.

	Returns:
	str if set else None

	
property email: str | None

	Get the email of the contact.

	Returns:
	str if set else None

	
property phone: str | None

	Get the phone of the contact.

	Returns:
	str if set else None

	
class cyclonedx.model.contact.OrganizationalEntity(*, name: str | None = None, urls: Iterable[cyclonedx.model.XsUri] | None = None, contacts: Iterable[OrganizationalContact] | None = None, address: PostalAddress | None = None)

	This is our internal representation of the organizationalEntity complex type that can be used in multiple places
within a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_organizationalEntity

	
property name: str | None

	Get the name of the organization.

	Returns:
	str if set else None

	
property address: PostalAddress | None

	The physical address (location) of the organization.

	Returns:
	PostalAddress or None

	
property urls: SortedSet[XsUri]

	Get a list of URLs of the organization. Multiple URLs are allowed.

	Returns:
	Set of XsUri

	
property contacts: SortedSet[OrganizationalContact]

	Get a list of contact person at the organization. Multiple contacts are allowed.

	Returns:
	Set of OrganizationalContact

 cyclonedx.model.crypto

cyclonedx.model.crypto

This set of classes represents cryptoPropertiesType Complex Type in the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

Module Contents

Classes

	CryptoAssetType

	This is our internal representation of the cryptoPropertiesType.assetType ENUM type within the CycloneDX standard.

	CryptoPrimitive

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.primitive ENUM type within the

	CryptoExecutionEnvironment

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.executionEnvironment ENUM type

	CryptoImplementationPlatform

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.implementationPlatform ENUM type

	CryptoCertificationLevel

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.certificationLevel ENUM type

	CryptoMode

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.mode ENUM type

	CryptoPadding

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.padding ENUM type

	CryptoFunction

	This is our internal representation of the cryptoPropertiesType.algorithmProperties.cryptoFunctions.cryptoFunction

	AlgorithmProperties

	This is our internal representation of the cryptoPropertiesType.algorithmProperties ENUM type within the CycloneDX

	CertificateProperties

	This is our internal representation of the cryptoPropertiesType.certificateProperties complex type within

	RelatedCryptoMaterialType

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.type ENUM type

	RelatedCryptoMaterialState

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.state ENUM type

	RelatedCryptoMaterialSecuredBy

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.securedBy complex

	RelatedCryptoMaterialProperties

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties complex type

	ProtocolPropertiesType

	This is our internal representation of the cryptoPropertiesType.protocolProperties.type ENUM type

	ProtocolPropertiesCipherSuite

	This is our internal representation of the cryptoPropertiesType.protocolProperties.cipherSuites.cipherSuite

	Ikev2TransformTypes

	This is our internal representation of the cryptoPropertiesType.protocolProperties.ikev2TransformTypes

	ProtocolProperties

	This is our internal representation of the cryptoPropertiesType.protocolProperties complex type within

	CryptoProperties

	This is our internal representation of the cryptoPropertiesType complex type within CycloneDX standard.

	
class cyclonedx.model.crypto.CryptoAssetType

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.assetType ENUM type within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
ALGORITHM = 'algorithm'

	

	
CERTIFICATE = 'certificate'

	

	
PROTOCOL = 'protocol'

	

	
RELATED_CRYPTO_MATERIAL = 'related-crypto-material'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoPrimitive

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.primitive ENUM type within the
CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
AE = 'ae'

	

	
BLOCK_CIPHER = 'block-cipher'

	

	
COMBINER = 'combiner'

	

	
DRBG = 'drbg'

	

	
HASH = 'hash'

	

	
KDF = 'kdf'

	

	
KEM = 'kem'

	

	
KEY_AGREE = 'key-agree'

	

	
MAC = 'mac'

	

	
PKE = 'pke'

	

	
SIGNATURE = 'signature'

	

	
STREAM_CIPHER = 'stream-cipher'

	

	
XOF = 'xof'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoExecutionEnvironment

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.executionEnvironment ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
HARDWARE = 'hardware'

	

	
SOFTWARE_ENCRYPTED_RAM = 'software-encrypted-ram'

	

	
SOFTWARE_PLAIN_RAM = 'software-plain-ram'

	

	
SOFTWARE_TEE = 'software-tee'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoImplementationPlatform

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.implementationPlatform ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
ARMV7_A = 'armv7-a'

	

	
ARMV7_M = 'armv7-m'

	

	
ARMV8_A = 'armv8-a'

	

	
ARMV8_M = 'armv8-m'

	

	
ARMV9_A = 'armv9-a'

	

	
ARMV9_M = 'armv9-m'

	

	
GENERIC = 'generic'

	

	
PPC64 = 'ppc64'

	

	
PPC64LE = 'ppc64le'

	

	
S390X = 's390x'

	

	
X86_32 = 'x86_32'

	

	
X86_64 = 'x86_64'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoCertificationLevel

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.certificationLevel ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
NONE = 'none'

	

	
FIPS140_1_L1 = 'fips140-1-l1'

	

	
FIPS140_1_L2 = 'fips140-1-l2'

	

	
FIPS140_1_L3 = 'fips140-1-l3'

	

	
FIPS140_1_L4 = 'fips140-1-l4'

	

	
FIPS140_2_L1 = 'fips140-2-l1'

	

	
FIPS140_2_L2 = 'fips140-2-l2'

	

	
FIPS140_2_L3 = 'fips140-2-l3'

	

	
FIPS140_2_L4 = 'fips140-2-l4'

	

	
FIPS140_3_L1 = 'fips140-3-l1'

	

	
FIPS140_3_L2 = 'fips140-3-l2'

	

	
FIPS140_3_L3 = 'fips140-3-l3'

	

	
FIPS140_3_L4 = 'fips140-3-l4'

	

	
CC_EAL1 = 'cc-eal1'

	

	
CC_EAL1_PLUS = 'cc-eal1+'

	

	
CC_EAL2 = 'cc-eal2'

	

	
CC_EAL2_PLUS = 'cc-eal2+'

	

	
CC_EAL3 = 'cc-eal3'

	

	
CC_EAL3_PLUS = 'cc-eal3+'

	

	
CC_EAL4 = 'cc-eal4'

	

	
CC_EAL4_PLUS = 'cc-eal4+'

	

	
CC_EAL5 = 'cc-eal5'

	

	
CC_EAL5_PLUS = 'cc-eal5+'

	

	
CC_EAL6 = 'cc-eal6'

	

	
CC_EAL6_PLUS = 'cc-eal6+'

	

	
CC_EAL7 = 'cc-eal7'

	

	
CC_EAL7_PLUS = 'cc-eal7+'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoMode

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.mode ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
CBC = 'cbc'

	

	
CCM = 'ccm'

	

	
CFB = 'cfb'

	

	
CTR = 'ctr'

	

	
ECB = 'ecb'

	

	
GCM = 'gcm'

	

	
OFB = 'ofb'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoPadding

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.padding ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
PKCS5 = 'pkcs5'

	

	
PKCS7 = 'pkcs7'

	

	
PKCS1V15 = 'pkcs1v15'

	

	
OAEP = 'oaep'

	

	
RAW = 'raw'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.CryptoFunction

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.algorithmProperties.cryptoFunctions.cryptoFunction
ENUM type within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
DECAPSULATE = 'decapsulate'

	

	
DECRYPT = 'decrypt'

	

	
DIGEST = 'digest'

	

	
ENCAPSULATE = 'encapsulate'

	

	
ENCRYPT = 'encrypt'

	

	
GENERATE = 'generate'

	

	
KEYDERIVE = 'keyderive'

	

	
KEYGEN = 'keygen'

	

	
SIGN = 'sign'

	

	
TAG = 'tag'

	

	
VERIFY = 'verify'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.AlgorithmProperties(*, primitive: CryptoPrimitive | None = None, parameter_set_identifier: str | None = None, curve: str | None = None, execution_environment: CryptoExecutionEnvironment | None = None, implementation_platform: CryptoImplementationPlatform | None = None, certification_levels: Iterable[CryptoCertificationLevel] | None = None, mode: CryptoMode | None = None, padding: CryptoPadding | None = None, crypto_functions: Iterable[CryptoFunction] | None = None, classical_security_level: int | None = None, nist_quantum_security_level: int | None = None)

	This is our internal representation of the cryptoPropertiesType.algorithmProperties ENUM type within the CycloneDX
standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property primitive: CryptoPrimitive | None

	Cryptographic building blocks used in higher-level cryptographic systems and protocols.

Primitives represent different cryptographic routines: deterministic random bit generators (drbg, e.g. CTR_DRBG
from NIST SP800-90A-r1), message authentication codes (mac, e.g. HMAC-SHA-256), blockciphers (e.g. AES),
streamciphers (e.g. Salsa20), signatures (e.g. ECDSA), hash functions (e.g. SHA-256),
public-key encryption schemes (pke, e.g. RSA), extended output functions (xof, e.g. SHAKE256),
key derivation functions (e.g. pbkdf2), key agreement algorithms (e.g. ECDH),
key encapsulation mechanisms (e.g. ML-KEM), authenticated encryption (ae, e.g. AES-GCM) and the combination of
multiple algorithms (combiner, e.g. SP800-56Cr2).

	Returns:
	CryptoPrimitive or None

	
property parameter_set_identifier: str | None

	An identifier for the parameter set of the cryptographic algorithm. Examples: in AES128, ‘128’ identifies the
key length in bits, in SHA256, ‘256’ identifies the digest length, ‘128’ in SHAKE128 identifies its maximum
security level in bits, and ‘SHA2-128s’ identifies a parameter set used in SLH-DSA (FIPS205).

	Returns:
	str or None

	
property curve: str | None

	The specific underlying Elliptic Curve (EC) definition employed which is an indicator of the level of security
strength, performance and complexity. Absent an authoritative source of curve names, CycloneDX recommends use
of curve names as defined at https://neuromancer.sk/std/, the source from which can be found at
https://github.com/J08nY/std-curves.

	Returns:
	str or None

	
property execution_environment: CryptoExecutionEnvironment | None

	The target and execution environment in which the algorithm is implemented in.

	Returns:
	CryptoExecutionEnvironment or None

	
property implementation_platform: CryptoImplementationPlatform | None

	The target platform for which the algorithm is implemented. The implementation can be ‘generic’, running on
any platform or for a specific platform.

	Returns:
	CryptoImplementationPlatform or None

	
property certification_levels: SortedSet[CryptoCertificationLevel]

	The certification that the implementation of the cryptographic algorithm has received, if any. Certifications
include revisions and levels of FIPS 140 or Common Criteria of different Extended Assurance Levels (CC-EAL).

	Returns:
	Iterable[CryptoCertificationLevel]

	
property mode: CryptoMode | None

	The mode of operation in which the cryptographic algorithm (block cipher) is used.

	Returns:
	CryptoMode or None

	
property padding: CryptoPadding | None

	The padding scheme that is used for the cryptographic algorithm.

	Returns:
	CryptoPadding or None

	
property crypto_functions: SortedSet[CryptoFunction]

	The cryptographic functions implemented by the cryptographic algorithm.

	Returns:
	Iterable[CryptoFunction]

	
property classical_security_level: int | None

	The classical security level that a cryptographic algorithm provides (in bits).

	Returns:
	int or None

	
property nist_quantum_security_level: int | None

	The NIST security strength category as defined in
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
evaluation-criteria/security-(evaluation-criteria). A value of 0 indicates that none of the categories are met.

	Returns:
	int or None

	
class cyclonedx.model.crypto.CertificateProperties(*, subject_name: str | None = None, issuer_name: str | None = None, not_valid_before: datetime.datetime | None = None, not_valid_after: datetime.datetime | None = None, signature_algorithm_ref: cyclonedx.model.bom_ref.BomRef | None = None, subject_public_key_ref: cyclonedx.model.bom_ref.BomRef | None = None, certificate_format: str | None = None, certificate_extension: str | None = None)

	This is our internal representation of the cryptoPropertiesType.certificateProperties complex type within
CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property subject_name: str | None

	The subject name for the certificate.

	Returns:
	str or None

	
property issuer_name: str | None

	The issuer name for the certificate.

	Returns:
	str or None

	
property not_valid_before: datetime.datetime | None

	The date and time according to ISO-8601 standard from which the certificate is valid.

	Returns:
	datetime or None

	
property not_valid_after: datetime.datetime | None

	The date and time according to ISO-8601 standard from which the certificate is not valid anymore.

	Returns:
	datetime or None

	
property signature_algorithm_ref: cyclonedx.model.bom_ref.BomRef | None

	The bom-ref to signature algorithm used by the certificate.

	Returns:
	BomRef or None

	
property subject_public_key_ref: cyclonedx.model.bom_ref.BomRef | None

	The bom-ref to the public key of the subject.

	Returns:
	BomRef or None

	
property certificate_format: str | None

	The format of the certificate. Examples include X.509, PEM, DER, and CVC.

	Returns:
	str or None

	
property certificate_extension: str | None

	The file extension of the certificate. Examples include crt, pem, cer, der, and p12.

	Returns:
	str or None

	
class cyclonedx.model.crypto.RelatedCryptoMaterialType

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.type ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
ADDITIONAL_DATA = 'additional-data'

	

	
CIPHERTEXT = 'ciphertext'

	

	
CREDENTIAL = 'credential'

	

	
DIGEST = 'digest'

	

	
INITIALIZATION_VECTOR = 'initialization-vector'

	

	
KEY = 'key'

	

	
NONCE = 'nonce'

	

	
PASSWORD = 'password'

	

	
PRIVATE_KEY = 'private-key'

	

	
PUBLIC_KEY = 'public-key'

	

	
SALT = 'salt'

	

	
SECRET_KEY = 'secret-key'

	

	
SEED = 'seed'

	

	
SHARED_SECRET = 'shared-secret'

	

	
SIGNATURE = 'signature'

	

	
TAG = 'tag'

	

	
TOKEN = 'token'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.RelatedCryptoMaterialState

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.state ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
ACTIVE = 'active'

	

	
COMPROMISED = 'compromised'

	

	
DEACTIVATED = 'deactivated'

	

	
DESTROYED = 'destroyed'

	

	
PRE_ACTIVATION = 'pre-activation'

	

	
SUSPENDED = 'suspended'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.RelatedCryptoMaterialSecuredBy(*, mechanism: str | None = None, algorithm_ref: cyclonedx.model.bom_ref.BomRef | None = None)

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties.securedBy complex
type within CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property mechanism: str | None

	Specifies the mechanism by which the cryptographic asset is secured by.
Examples include HSM, TPM, XGX, Software, and None.

	Returns:
	str or None

	
property algorithm_ref: cyclonedx.model.bom_ref.BomRef | None

	The bom-ref to the algorithm.

	Returns:
	BomRef or None

	
class cyclonedx.model.crypto.RelatedCryptoMaterialProperties(*, type: RelatedCryptoMaterialType | None = None, id: str | None = None, state: RelatedCryptoMaterialState | None = None, algorithm_ref: cyclonedx.model.bom_ref.BomRef | None = None, creation_date: datetime.datetime | None = None, activation_date: datetime.datetime | None = None, update_date: datetime.datetime | None = None, expiration_date: datetime.datetime | None = None, value: str | None = None, size: int | None = None, format: str | None = None, secured_by: RelatedCryptoMaterialSecuredBy | None = None)

	This is our internal representation of the cryptoPropertiesType.relatedCryptoMaterialProperties complex type
within CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property type: RelatedCryptoMaterialType | None

	The type for the related cryptographic material.

Returns

	
property id: str | None

	The optional unique identifier for the related cryptographic material.

	Returns:

	

	
property state: RelatedCryptoMaterialState | None

	The key state as defined by NIST SP 800-57.

	Returns:
	RelatedCryptoMaterialState or None

	
property algorithm_ref: cyclonedx.model.bom_ref.BomRef | None

	The bom-ref to the algorithm used to generate the related cryptographic material.

	Returns:
	BomRef or None

	
property creation_date: datetime.datetime | None

	The date and time (timestamp) when the related cryptographic material was created.

	Returns:
	datetime or None

	
property activation_date: datetime.datetime | None

	The date and time (timestamp) when the related cryptographic material was activated.

	Returns:
	datetime or None

	
property update_date: datetime.datetime | None

	The date and time (timestamp) when the related cryptographic material was updated.

	Returns:
	datetime or None

	
property expiration_date: datetime.datetime | None

	The date and time (timestamp) when the related cryptographic material expires.

	Returns:
	datetime or None

	
property value: str | None

	The associated value of the cryptographic material.

	Returns:
	str or None

	
property size: int | None

	The size of the cryptographic asset (in bits).

	Returns:
	int or None

	
property format: str | None

	The format of the related cryptographic material (e.g. P8, PEM, DER).

	Returns:
	str or None

	
property secured_by: RelatedCryptoMaterialSecuredBy | None

	The mechanism by which the cryptographic asset is secured by.

	Returns:
	RelatedCryptoMaterialSecuredBy or None

	
class cyclonedx.model.crypto.ProtocolPropertiesType

	Bases: str, enum.Enum

This is our internal representation of the cryptoPropertiesType.protocolProperties.type ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
IKE = 'ike'

	

	
IPSEC = 'ipsec'

	

	
SSH = 'ssh'

	

	
SSTP = 'sstp'

	

	
TLS = 'tls'

	

	
WPA = 'wpa'

	

	
OTHER = 'other'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.crypto.ProtocolPropertiesCipherSuite(*, name: str | None = None, algorithms: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None, identifiers: Iterable[str] | None = None)

	This is our internal representation of the cryptoPropertiesType.protocolProperties.cipherSuites.cipherSuite
complex type within CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property name: str | None

	A common name for the cipher suite. For example: TLS_DHE_RSA_WITH_AES_128_CCM.

	Returns:
	str or None

	
property algorithms: SortedSet[BomRef]

	A list BomRefs to algorithms related to the cipher suite.

	Returns:
	Iterable[BomRef] or None

	
property identifiers: SortedSet[str]

	A list of common identifiers for the cipher suite. Examples include 0xC0 and 0x9E.

	Returns:
	Iterable[str] or None

	
class cyclonedx.model.crypto.Ikev2TransformTypes(*, encr: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None, prf: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None, integ: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None, ke: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None, esn: bool | None = None, auth: Iterable[cyclonedx.model.bom_ref.BomRef] | None = None)

	This is our internal representation of the cryptoPropertiesType.protocolProperties.ikev2TransformTypes
complex type within CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property encr: SortedSet[BomRef]

	Transform Type 1: encryption algorithms.

	Returns:
	Iterable[BomRef] or None

	
property prf: SortedSet[BomRef]

	Transform Type 2: pseudorandom functions.

	Returns:
	Iterable[BomRef] or None

	
property integ: SortedSet[BomRef]

	Transform Type 3: integrity algorithms.

	Returns:
	Iterable[BomRef] or None

	
property ke: SortedSet[BomRef]

	Transform Type 4: Key Exchange Method (KE) per RFC9370, formerly called Diffie-Hellman Group (D-H).

	Returns:
	Iterable[BomRef] or None

	
property esn: bool | None

	Specifies if an Extended Sequence Number (ESN) is used.

	Returns:
	bool or None

	
property auth: SortedSet[BomRef]

	IKEv2 Authentication method.

	Returns:
	Iterable[BomRef] or None

	
class cyclonedx.model.crypto.ProtocolProperties(*, type: ProtocolPropertiesType | None = None, version: str | None = None, cipher_suites: Iterable[ProtocolPropertiesCipherSuite] | None = None, ikev2_transform_types: Ikev2TransformTypes | None = None)

	This is our internal representation of the cryptoPropertiesType.protocolProperties complex type within
CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property type: ProtocolPropertiesType | None

	The concrete protocol type.

	Returns:
	ProtocolPropertiesType or None

	
property version: str | None

	The version of the protocol. Examples include 1.0, 1.2, and 1.99.

	Returns:
	str or None

	
property cipher_suites: SortedSet[ProtocolPropertiesCipherSuite]

	A list of cipher suites related to the protocol.

	Returns:
	Iterable[ProtocolPropertiesCipherSuite]

	
property ikev2_transform_types: Ikev2TransformTypes | None

	The IKEv2 transform types supported (types 1-4), defined in RFC7296 section 3.3.2, and additional properties.

	Returns:
	Ikev2TransformTypes or None

	
class cyclonedx.model.crypto.CryptoProperties(*, asset_type: CryptoAssetType | None = None, algorithm_properties: AlgorithmProperties | None = None, certificate_properties: CertificateProperties | None = None, related_crypto_material_properties: RelatedCryptoMaterialProperties | None = None, protocol_properties: ProtocolProperties | None = None, oid: str | None = None)

	This is our internal representation of the cryptoPropertiesType complex type within CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType: https://cyclonedx.org/docs/1.6/#type_cryptoPropertiesType

	
property asset_type: CryptoAssetType | None

	Cryptographic assets occur in several forms. Algorithms and protocols are most commonly implemented in
specialized cryptographic libraries. They may however also be ‘hardcoded’ in software components. Certificates
and related cryptographic material like keys, tokens, secrets or passwords are other cryptographic assets to be
modelled.

	Returns:
	CryptoAssetType

	
property algorithm_properties: AlgorithmProperties | None

	Additional properties specific to a cryptographic algorithm.

	Returns:
	AlgorithmProperties or None

	
property certificate_properties: CertificateProperties | None

	Properties for cryptographic assets of asset type ‘certificate’.

	Returns:
	CertificateProperties or None

	
property related_crypto_material_properties: RelatedCryptoMaterialProperties | None

	Properties for cryptographic assets of asset type ‘relatedCryptoMaterial’.

	Returns:
	RelatedCryptoMaterialProperties or None

	
property protocol_properties: ProtocolProperties | None

	Properties specific to cryptographic assets of type: ‘protocol’.

	Returns:
	ProtocolProperties or None

	
property oid: str | None

	The object identifier (OID) of the cryptographic asset.

	Returns:
	str or None

 cyclonedx.model.dependency

cyclonedx.model.dependency

Module Contents

Classes

	Dependency

	Models a Dependency within a BOM.

	Dependable

	Dependable objects can be part of the Dependency Graph

	
class cyclonedx.model.dependency.Dependency(ref: cyclonedx.model.bom_ref.BomRef, dependencies: Iterable[Dependency] | None = None)

	Models a Dependency within a BOM.

Note

See https://cyclonedx.org/docs/1.4/xml/#type_dependencyType

	
property ref: cyclonedx.model.bom_ref.BomRef

	

	
property dependencies: SortedSet[Dependency]

	

	
dependencies_as_bom_refs() → Set[cyclonedx.model.bom_ref.BomRef]

	

	
class cyclonedx.model.dependency.Dependable

	Bases: abc.ABC

Dependable objects can be part of the Dependency Graph

	
abstract property bom_ref: cyclonedx.model.bom_ref.BomRef

	

 cyclonedx.model.impact_analysis

cyclonedx.model.impact_analysis

This set of classes represents the data about Impact Analysis.

Impact Analysis is new for CycloneDX schema version 1.

Note

See the CycloneDX Schema extension definition https://cyclonedx.org/docs/1.4

Module Contents

Classes

	ImpactAnalysisAffectedStatus

	Enum object that defines the permissible impact analysis affected states.

	ImpactAnalysisJustification

	Enum object that defines the rationale of why the impact analysis state was asserted.

	ImpactAnalysisResponse

	Enum object that defines the valid rationales as to why the impact analysis state was asserted.

	ImpactAnalysisState

	Enum object that defines the permissible impact analysis states.

	
class cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus

	Bases: str, enum.Enum

Enum object that defines the permissible impact analysis affected states.

The vulnerability status of a given version or range of versions of a product.

The statuses ‘affected’ and ‘unaffected’ indicate that the version is affected or unaffected by the vulnerability.

The status ‘unknown’ indicates that it is unknown or unspecified whether the given version is affected. There can
be many reasons for an ‘unknown’ status, including that an investigation has not been undertaken or that a vendor
has not disclosed the status.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_impactAnalysisAffectedStatusType

	
AFFECTED = 'affected'

	

	
UNAFFECTED = 'unaffected'

	

	
UNKNOWN = 'unknown'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.impact_analysis.ImpactAnalysisJustification

	Bases: str, enum.Enum

Enum object that defines the rationale of why the impact analysis state was asserted.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_impactAnalysisJustificationType

	
CODE_NOT_PRESENT = 'code_not_present'

	

	
CODE_NOT_REACHABLE = 'code_not_reachable'

	

	
PROTECTED_AT_PERIMITER = 'protected_at_perimeter'

	

	
PROTECTED_AT_RUNTIME = 'protected_at_runtime'

	

	
PROTECTED_BY_COMPILER = 'protected_by_compiler'

	

	
PROTECTED_BY_MITIGATING_CONTROL = 'protected_by_mitigating_control'

	

	
REQUIRES_CONFIGURATION = 'requires_configuration'

	

	
REQUIRES_DEPENDENCY = 'requires_dependency'

	

	
REQUIRES_ENVIRONMENT = 'requires_environment'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.impact_analysis.ImpactAnalysisResponse

	Bases: str, enum.Enum

Enum object that defines the valid rationales as to why the impact analysis state was asserted.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_impactAnalysisResponsesType

	
CAN_NOT_FIX = 'can_not_fix'

	

	
ROLLBACK = 'rollback'

	

	
UPDATE = 'update'

	

	
WILL_NOT_FIX = 'will_not_fix'

	

	
WORKAROUND_AVAILABLE = 'workaround_available'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.impact_analysis.ImpactAnalysisState

	Bases: str, enum.Enum

Enum object that defines the permissible impact analysis states.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_impactAnalysisStateType

	
RESOLVED = 'resolved'

	

	
RESOLVED_WITH_PEDIGREE = 'resolved_with_pedigree'

	

	
EXPLOITABLE = 'exploitable'

	

	
IN_TRIAGE = 'in_triage'

	

	
FALSE_POSITIVE = 'false_positive'

	

	
NOT_AFFECTED = 'not_affected'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

 cyclonedx.model.issue

cyclonedx.model.issue

Module Contents

Classes

	IssueClassification

	This is our internal representation of the enum issueClassification.

	IssueTypeSource

	This is our internal representation ofa source within the IssueType complex type that can be used in multiple

	IssueType

	This is our internal representation of an IssueType complex type that can be used in multiple places within

	
class cyclonedx.model.issue.IssueClassification

	Bases: str, enum.Enum

This is our internal representation of the enum issueClassification.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_issueClassification

	
DEFECT = 'defect'

	

	
ENHANCEMENT = 'enhancement'

	

	
SECURITY = 'security'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.issue.IssueTypeSource(*, name: str | None = None, url: cyclonedx.model.XsUri | None = None)

	This is our internal representation ofa source within the IssueType complex type that can be used in multiple
places within a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_issueType

	
property name: str | None

	The name of the source. For example “National Vulnerability Database”, “NVD”, and “Apache”.

	Returns:
	str if set else None

	
property url: cyclonedx.model.XsUri | None

	Optional url of the issue documentation as provided by the source.

	Returns:
	XsUri if set else None

	
class cyclonedx.model.issue.IssueType(*, type: IssueClassification, id: str | None = None, name: str | None = None, description: str | None = None, source: IssueTypeSource | None = None, references: Iterable[cyclonedx.model.XsUri] | None = None)

	This is our internal representation of an IssueType complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/xml/#type_issueType

	
property type: IssueClassification

	Specifies the type of issue.

	Returns:
	IssueClassification

	
property id: str | None

	The identifier of the issue assigned by the source of the issue.

	Returns:
	str if set else None

	
property name: str | None

	The name of the issue.

	Returns:
	str if set else None

	
property description: str | None

	A description of the issue.

	Returns:
	str if set else None

	
property source: IssueTypeSource | None

	The source of this issue.

	Returns:
	IssueTypeSource if set else None

	
property references: SortedSet[XsUri]

	Any reference URLs related to this issue.

	Returns:
	Set of XsUri

 cyclonedx.model.license

cyclonedx.model.license

License related things

Module Contents

Classes

	LicenseAcknowledgement

	This is our internal representation of the type_licenseAcknowledgementEnumerationType ENUM type

	DisjunctiveLicense

	This is our internal representation of licenseType complex type that can be used in multiple places within

	LicenseExpression

	This is our internal representation of licenseType's expression type that can be used in multiple places within

	LicenseRepository

	Collection of License.

Attributes

	LicenseExpressionAcknowledgement

	Deprecated alias for LicenseAcknowledgement

	License

	TypeAlias for a union of supported license models.

	
class cyclonedx.model.license.LicenseAcknowledgement

	Bases: str, enum.Enum

This is our internal representation of the type_licenseAcknowledgementEnumerationType ENUM type
within the CycloneDX standard.

Note

Introduced in CycloneDX v1.6

Note

See the CycloneDX Schema for hashType:
https://cyclonedx.org/docs/1.6/#type_licenseAcknowledgementEnumerationType

	
CONCLUDED = 'concluded'

	

	
DECLARED = 'declared'

	

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
cyclonedx.model.license.LicenseExpressionAcknowledgement

	Deprecated alias for LicenseAcknowledgement

	
class cyclonedx.model.license.DisjunctiveLicense(*, id: str | None = None, name: str | None = None, text: cyclonedx.model.AttachedText | None = None, url: cyclonedx.model.XsUri | None = None, acknowledgement: LicenseAcknowledgement | None = None)

	This is our internal representation of licenseType complex type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/json/#components_items_licenses

	
property id: str | None

	A SPDX license ID.

Note

See the list of expected values:
https://cyclonedx.org/docs/1.4/json/#components_items_licenses_items_license_id

	Returns:
	str or None

	
property name: str | None

	If SPDX does not define the license used, this field may be used to provide the license name.

	Returns:
	str or None

	
property text: cyclonedx.model.AttachedText | None

	Specifies the optional full text of the attachment

	Returns:
	AttachedText else None

	
property url: cyclonedx.model.XsUri | None

	The URL to the attachment file. If the attachment is a license or BOM, an externalReference should also be
specified for completeness.

	Returns:
	XsUri or None

	
property acknowledgement: LicenseAcknowledgement | None

	Declared licenses and concluded licenses represent two different stages in the licensing process within
software development.

Declared licenses refer to the initial intention of the software authors regarding the
licensing terms under which their code is released. On the other hand, concluded licenses are the result of a
comprehensive analysis of the project’s codebase to identify and confirm the actual licenses of the components
used, which may differ from the initially declared licenses. While declared licenses provide an upfront
indication of the licensing intentions, concluded licenses offer a more thorough understanding of the actual
licensing within a project, facilitating proper compliance and risk management. Observed licenses are defined
in evidence.licenses. Observed licenses form the evidence necessary to substantiate a concluded license.

	Returns:
	LicenseAcknowledgement or None

	
class cyclonedx.model.license.LicenseExpression(value: str, acknowledgement: LicenseAcknowledgement | None = None)

	This is our internal representation of licenseType’s expression type that can be used in multiple places within
a CycloneDX BOM document.

Note

See the CycloneDX Schema definition:
https://cyclonedx.org/docs/1.4/json/#components_items_licenses_items_expression

	
property value: str

	Value of this LicenseExpression.

	Returns:
	str

	
property acknowledgement: LicenseAcknowledgement | None

	Declared licenses and concluded licenses represent two different stages in the licensing process within
software development.

Declared licenses refer to the initial intention of the software authors regarding the
licensing terms under which their code is released. On the other hand, concluded licenses are the result of a
comprehensive analysis of the project’s codebase to identify and confirm the actual licenses of the components
used, which may differ from the initially declared licenses. While declared licenses provide an upfront
indication of the licensing intentions, concluded licenses offer a more thorough understanding of the actual
licensing within a project, facilitating proper compliance and risk management. Observed licenses are defined
in evidence.licenses. Observed licenses form the evidence necessary to substantiate a concluded license.

	Returns:
	LicenseAcknowledgement or None

	
cyclonedx.model.license.License

	TypeAlias for a union of supported license models.

	LicenseExpression

	DisjunctiveLicense

	
class cyclonedx.model.license.LicenseRepository

	Bases: sortedcontainers.SortedSet[License]

Collection of License.

This is a set, not a list. Order MUST NOT matter here.
If you wanted a certain order, then you should also express whether the items are concat by AND or OR.
If you wanted to do so, you should use LicenseExpression.

As a model, this MUST accept multiple LicenseExpression along with
multiple DisjunctiveLicense, as this was an accepted in CycloneDX JSON before v1.5.
So for modeling purposes, this is supported.
Denormalizers/deserializers will be thankful.
The normalization/serialization process SHOULD take care of these facts and do what is needed.

 cyclonedx.model.release_note

cyclonedx.model.release_note

Module Contents

Classes

	ReleaseNotes

	This is our internal representation of a releaseNotesType for a Component in a BOM.

	
class cyclonedx.model.release_note.ReleaseNotes(*, type: str, title: str | None = None, featured_image: cyclonedx.model.XsUri | None = None, social_image: cyclonedx.model.XsUri | None = None, description: str | None = None, timestamp: datetime.datetime | None = None, aliases: Iterable[str] | None = None, tags: Iterable[str] | None = None, resolves: Iterable[cyclonedx.model.issue.IssueType] | None = None, notes: Iterable[cyclonedx.model.Note] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None)

	This is our internal representation of a releaseNotesType for a Component in a BOM.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_releaseNotesType

	
property type: str

	The software versioning type.

It is RECOMMENDED that the release type use one of ‘major’, ‘minor’, ‘patch’, ‘pre-release’, or ‘internal’.

Representing all possible software release types is not practical, so standardizing on the recommended values,
whenever possible, is strongly encouraged.

	major = A major release may contain significant changes or may introduce breaking changes.

	
	minor = A minor release, also known as an update, may contain a smaller number of changes than major
	releases.

	patch = Patch releases are typically unplanned and may resolve defects or important security issues.

	
	pre-release = A pre-release may include alpha, beta, or release candidates and typically have limited
	support. They provide the ability to preview a release prior to its general availability.

	
	internal = Internal releases are not for public consumption and are intended to be used exclusively by the
	project or manufacturer that produced it.

	
property title: str | None

	The title of the release.

	
property featured_image: cyclonedx.model.XsUri | None

	The URL to an image that may be prominently displayed with the release note.

	
property social_image: cyclonedx.model.XsUri | None

	The URL to an image that may be used in messaging on social media platforms.

	
property description: str | None

	A short description of the release.

	
property timestamp: datetime.datetime | None

	The date and time (timestamp) when the release note was created.

	
property aliases: SortedSet[str]

	One or more alternate names the release may be referred to. This may include unofficial terms used by
development and marketing teams (e.g. code names).

	Returns:
	Set of str

	
property tags: SortedSet[str]

	One or more tags that may aid in search or retrieval of the release note.

	Returns:
	Set of str

	
property resolves: SortedSet[IssueType]

	A collection of issues that have been resolved.

	Returns:
	Set of IssueType

	
property notes: SortedSet[Note]

	Zero or more release notes containing the locale and content. Multiple note elements may be specified to support
release notes in a wide variety of languages.

	Returns:
	Set of Note

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a name-value store. This provides flexibility to include data not
officially supported in the standard without having to use additional namespaces or create extensions. Unlike
key-value stores, properties support duplicate names, each potentially having different values.

	Returns:
	Set of Property

 cyclonedx.model.service

cyclonedx.model.service

This set of classes represents the data that is possible about known Services.

Note

See the CycloneDX Schema extension definition https://cyclonedx.org/docs/1.4/xml/#type_servicesType

Module Contents

Classes

	Service

	Class that models the service complex type in the CycloneDX schema.

	
class cyclonedx.model.service.Service(*, name: str, bom_ref: str | cyclonedx.model.bom_ref.BomRef | None = None, provider: cyclonedx.model.contact.OrganizationalEntity | None = None, group: str | None = None, version: str | None = None, description: str | None = None, endpoints: Iterable[cyclonedx.model.XsUri] | None = None, authenticated: bool | None = None, x_trust_boundary: bool | None = None, data: Iterable[cyclonedx.model.DataClassification] | None = None, licenses: Iterable[cyclonedx.model.license.License] | None = None, external_references: Iterable[cyclonedx.model.ExternalReference] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None, services: Iterable[Service] | None = None, release_notes: cyclonedx.model.release_note.ReleaseNotes | None = None)

	Bases: cyclonedx.model.dependency.Dependable

Class that models the service complex type in the CycloneDX schema.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/xml/#type_service

	
property bom_ref: cyclonedx.model.bom_ref.BomRef

	An optional identifier which can be used to reference the service elsewhere in the BOM. Uniqueness is enforced
within all elements and children of the root-level bom element.

If a value was not provided in the constructor, a UUIDv4 will have been assigned.

	Returns:
	BomRef unique identifier for this Service

	
property provider: cyclonedx.model.contact.OrganizationalEntity | None

	Get the organization that provides the service.

	Returns:
	OrganizationalEntity if set else None

	
property group: str | None

	The grouping name, namespace, or identifier. This will often be a shortened, single name of the company or
project that produced the service or domain name. Whitespace and special characters should be avoided.

	Returns:
	str if provided else None

	
property name: str

	The name of the service. This will often be a shortened, single name of the service.

	Returns:
	str

	
property version: str | None

	The service version.

	Returns:
	str if set else None

	
property description: str | None

	Specifies a description for the service.

	Returns:
	str if set else None

	
property endpoints: SortedSet[XsUri]

	A list of endpoints URI’s this service provides.

	Returns:
	Set of XsUri

	
property authenticated: bool | None

	A boolean value indicating if the service requires authentication. A value of true indicates the service
requires authentication prior to use.

A value of false indicates the service does not require authentication.

	Returns:
	bool if set else None

	
property x_trust_boundary: bool | None

	A boolean value indicating if use of the service crosses a trust zone or boundary. A value of true indicates
that by using the service, a trust boundary is crossed.

A value of false indicates that by using the service, a trust boundary is not crossed.

	Returns:
	bool if set else None

	
property data: SortedSet[DataClassification]

	Specifies the data classification.

	Returns:
	Set of DataClassification

	
property licenses: cyclonedx.model.license.LicenseRepository

	A optional list of statements about how this Service is licensed.

	Returns:
	Set of LicenseChoice

	
property external_references: SortedSet[ExternalReference]

	Provides the ability to document external references related to the Service.

	Returns:
	Set of ExternalReference

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a key/value store. This provides flexibility to include data not
officially supported in the standard without having to use additional namespaces or create extensions.

	Return:
	Set of Property

	
property services: SortedSet['Service']

	A list of services included or deployed behind the parent service.

This is not a dependency tree.

It provides a way to specify a hierarchical representation of service assemblies.

	Returns:
	Set of Service

	
property release_notes: cyclonedx.model.release_note.ReleaseNotes | None

	Specifies optional release notes.

	Returns:
	ReleaseNotes or None

 cyclonedx.model.vulnerability

cyclonedx.model.vulnerability

This set of classes represents the data that is possible about known Vulnerabilities.

Prior to CycloneDX schema version 1.4, vulnerabilities were possible in XML versions ONLY of the standard through
a schema extension: https://cyclonedx.org/ext/vulnerability.

Since CycloneDX schema version 1.4, this has become part of the core schema.

Note

See the CycloneDX Schema extension definition https://cyclonedx.org/docs/1.4/#type_vulnerabilitiesType

Module Contents

Classes

	BomTargetVersionRange

	Class that represents either a version or version range and its affected status.

	BomTarget

	Class that represents referencing a Component or Service in a BOM.

	VulnerabilityAnalysis

	Class that models the analysis sub-element of the vulnerabilityType complex type.

	VulnerabilityAdvisory

	Class that models the advisoryType complex type.

	VulnerabilitySource

	Class that models the vulnerabilitySourceType complex type.

	VulnerabilityReference

	Class that models the nested reference within the vulnerabilityType complex type.

	VulnerabilityScoreSource

	Enum object that defines the permissible source types for a Vulnerability's score.

	VulnerabilitySeverity

	Class that defines the permissible severities for a Vulnerability.

	VulnerabilityRating

	Class that models the ratingType complex element CycloneDX core schema.

	VulnerabilityCredits

	Class that models the credits of vulnerabilityType complex type in the CycloneDX schema (version >= 1.4).

	Vulnerability

	Class that models the vulnerabilityType complex type in the CycloneDX schema (version >= 1.4).

	
class cyclonedx.model.vulnerability.BomTargetVersionRange(*, version: str | None = None, range: str | None = None, status: cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus | None = None)

	Class that represents either a version or version range and its affected status.

version and version_range are mutually exclusive.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property version: str | None

	A single version of a component or service.

	
property range: str | None

	A version range specified in Package URL Version Range syntax (vers) which is defined at
https://github.com/package-url/purl-spec/VERSION-RANGE-SPEC.rst

Note

The VERSION-RANGE-SPEC from Package URL is not a formalised standard at the time of writing and this no
validation of conformance with this draft standard is performed.

	
property status: cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus | None

	The vulnerability status for the version or range of versions.

	
class cyclonedx.model.vulnerability.BomTarget(*, ref: str, versions: Iterable[BomTargetVersionRange] | None = None)

	Class that represents referencing a Component or Service in a BOM.

Aims to represent the sub-element target of the complex type vulnerabilityType.

You can either create a cyclonedx.model.bom.Bom yourself programmatically, or generate a cyclonedx.model.bom.Bom
from a cyclonedx.parser.BaseParser implementation.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property ref: str

	Reference to a component or service by the objects bom-ref.

	
property versions: SortedSet[BomTargetVersionRange]

	Zero or more individual versions or range of versions.

	Returns:
	Set of BomTargetVersionRange

	
class cyclonedx.model.vulnerability.VulnerabilityAnalysis(*, state: cyclonedx.model.impact_analysis.ImpactAnalysisState | None = None, justification: cyclonedx.model.impact_analysis.ImpactAnalysisJustification | None = None, responses: Iterable[cyclonedx.model.impact_analysis.ImpactAnalysisResponse] | None = None, detail: str | None = None)

	Class that models the analysis sub-element of the vulnerabilityType complex type.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property state: cyclonedx.model.impact_analysis.ImpactAnalysisState | None

	The declared current state of an occurrence of a vulnerability, after automated or manual analysis.

	Returns:
	ImpactAnalysisState if set else None

	
property justification: cyclonedx.model.impact_analysis.ImpactAnalysisJustification | None

	The rationale of why the impact analysis state was asserted.

	Returns:
	ImpactAnalysisJustification if set else None

	
property responses: SortedSet[ImpactAnalysisResponse]

	A list of responses to the vulnerability by the manufacturer, supplier, or project responsible for the
affected component or service. More than one response is allowed. Responses are strongly encouraged for
vulnerabilities where the analysis state is exploitable.

	Returns:
	Set of ImpactAnalysisResponse

	
property detail: str | None

	A detailed description of the impact including methods used during assessment. If a vulnerability is not
exploitable, this field should include specific details on why the component or service is not impacted by this
vulnerability.

	Returns:
	str if set else None

	
class cyclonedx.model.vulnerability.VulnerabilityAdvisory(*, url: cyclonedx.model.XsUri, title: str | None = None)

	Class that models the advisoryType complex type.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_advisoryType

	
property title: str | None

	The title of this advisory.

	
property url: cyclonedx.model.XsUri

	The url of this advisory.

	
class cyclonedx.model.vulnerability.VulnerabilitySource(*, name: str | None = None, url: cyclonedx.model.XsUri | None = None)

	Class that models the vulnerabilitySourceType complex type.

This type is used for multiple purposes in the CycloneDX schema.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilitySourceType

	
property name: str | None

	Name of this Source.

	
property url: cyclonedx.model.XsUri | None

	The url of this Source.

	
class cyclonedx.model.vulnerability.VulnerabilityReference(*, id: str | None = None, source: VulnerabilitySource | None = None)

	Class that models the nested reference within the vulnerabilityType complex type.

Vulnerabilities may benefit from pointers to vulnerabilities that are the equivalent of the vulnerability specified.
Often times, the same vulnerability may exist in multiple sources of vulnerability intelligence, but have different
identifiers. These references provide a way to correlate vulnerabilities across multiple sources of vulnerability
intelligence.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property id: str | None

	The identifier that uniquely identifies the vulnerability in the associated Source. For example: CVE-2021-39182.

	
property source: VulnerabilitySource | None

	The source that published the vulnerability.

	
class cyclonedx.model.vulnerability.VulnerabilityScoreSource

	Bases: str, enum.Enum

Enum object that defines the permissible source types for a Vulnerability’s score.

Note

See the CycloneDX Schema definition: https://cyclonedx.org/docs/1.4/#type_scoreSourceType

Note

	No explicit carry-over from the former schema extension:
	https://github.com/CycloneDX/specification/blob/master/schema/ext/vulnerability-1.0.xsd

	
CVSS_V2 = 'CVSSv2'

	

	
CVSS_V3 = 'CVSSv3'

	

	
CVSS_V3_1 = 'CVSSv31'

	

	
CVSS_V4 = 'CVSSv4'

	

	
OWASP = 'OWASP'

	

	
SSVC = 'SSVC'

	

	
OTHER = 'other'

	

	
static get_from_vector(vector: str) → VulnerabilityScoreSource

	Attempt to derive the correct SourceType from an attack vector.

For example, often attack vector strings are prefixed with the scheme in question - such
that __CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:C/C:L/I:N/A:N__ would be the vector
__AV:L/AC:L/PR:N/UI:R/S:C/C:L/I:N/A:N__ under the __CVSS 3__ scheme.

	Returns:
	Always returns an instance of VulnerabilityScoreSource. VulnerabilityScoreSource.OTHER is
returned if the scheme is not obvious or known to us.

	
get_localised_vector(vector: str) → str

	This method will remove any Source Scheme type from the supplied vector, returning just the vector.

Note

Currently supports CVSS 3.x, CVSS 2.x and OWASP schemes.

	Returns:
	The vector without any scheme prefix as a str.

	
get_value_pre_1_4() → str

	Some of the enum values changed in 1.4 of the CycloneDX spec. This method allows us to
backport some of the changes for pre-1.4.

	Returns:
	str

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.vulnerability.VulnerabilitySeverity

	Bases: str, enum.Enum

Class that defines the permissible severities for a Vulnerability.

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_severityType

	
NONE = 'none'

	

	
INFO = 'info'

	

	
LOW = 'low'

	

	
MEDIUM = 'medium'

	

	
HIGH = 'high'

	

	
CRITICAL = 'critical'

	

	
UNKNOWN = 'unknown'

	

	
static get_from_cvss_scores(scores: Tuple[float, Ellipsis] | float | None) → VulnerabilitySeverity

	Derives the Severity of a Vulnerability from it’s declared CVSS scores.

	Args:
	scores: A tuple of CVSS scores. CVSS scoring system allows for up to three separate scores.

	Returns:
	Always returns an instance of VulnerabilitySeverity.

	
capitalize()

	Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower
case.

	
casefold()

	Return a version of the string suitable for caseless comparisons.

	
center()

	Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

	
count()

	S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.

	
encode()

	Encode the string using the codec registered for encoding.

	encoding
	The encoding in which to encode the string.

	errors
	The error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.

	
endswith()

	S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.

	
expandtabs()

	Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

	
find()

	S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
format()

	S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).

	
format_map()

	S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).

	
index()

	S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
isalnum()

	Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.

	
isalpha()

	Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.

	
isascii()

	Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.

	
isdecimal()

	Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.

	
isdigit()

	Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there
is at least one character in the string.

	
isidentifier()

	Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.

	
islower()

	Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.

	
isnumeric()

	Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at
least one character in the string.

	
isprintable()

	Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in
repr() or if it is empty.

	
isspace()

	Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.

	
istitle()

	Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.

	
isupper()

	Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.

	
join()

	Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

	
ljust()

	Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
lower()

	Return a copy of the string converted to lowercase.

	
lstrip()

	Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
partition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.

	
removeprefix()

	Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.

	
removesuffix()

	Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.

	
replace()

	Return a copy with all occurrences of substring old replaced by new.

	count
	Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are
replaced.

	
rfind()

	S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

	
rindex()

	S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

	
rjust()

	Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

	
rpartition()

	Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.

	
rsplit()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

	
rstrip()

	Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
split()

	Return a list of the substrings in the string, using sep as the separator string.

	sep
	The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including n r t f and spaces) and will discard
empty strings from the result.

	maxsplit
	Maximum number of splits (starting from the left).
-1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

	
splitlines()

	Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and
true.

	
startswith()

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
strip()

	Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

	
swapcase()

	Convert uppercase characters to lowercase and lowercase characters to uppercase.

	
title()

	Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining
cased characters have lower case.

	
translate()

	Replace each character in the string using the given translation table.

	table
	Translation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.

	
upper()

	Return a copy of the string converted to uppercase.

	
zfill()

	Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.model.vulnerability.VulnerabilityRating(*, source: VulnerabilitySource | None = None, score: decimal.Decimal | None = None, severity: VulnerabilitySeverity | None = None, method: VulnerabilityScoreSource | None = None, vector: str | None = None, justification: str | None = None)

	Class that models the ratingType complex element CycloneDX core schema.

This class previously modelled the scoreType complexe type in the schema extension used prior to schema version
1.4 - see https://github.com/CycloneDX/specification/blob/master/schema/ext/vulnerability-1.0.xsd.

Note

See ratingType in https://cyclonedx.org/docs/1.4/#ratingType

Warning

As part of implementing support for CycloneDX schema version 1.4, the three score types defined in the schema
extension used prior to 1.4 have been deprecated. The deprecated score_base should loosely be equivalent to
the new score in 1.4 schema. Both score_impact and score_exploitability are deprecated and removed as
they are redundant if you have the vector (the vector allows you to calculate the scores).

	
property source: VulnerabilitySource | None

	The source that published the vulnerability.

	
property score: decimal.Decimal | None

	The numerical score of the rating.

	
property severity: VulnerabilitySeverity | None

	The textual representation of the severity that corresponds to the numerical score of the rating.

	
property method: VulnerabilityScoreSource | None

	The risk scoring methodology/standard used.

	
property vector: str | None

	The textual representation of the metric values used to score the vulnerability - also known as the vector.

	
property justification: str | None

	An optional reason for rating the vulnerability as it was.

	
class cyclonedx.model.vulnerability.VulnerabilityCredits(*, organizations: Iterable[cyclonedx.model.contact.OrganizationalEntity] | None = None, individuals: Iterable[cyclonedx.model.contact.OrganizationalContact] | None = None)

	Class that models the credits of vulnerabilityType complex type in the CycloneDX schema (version >= 1.4).

This class also provides data support for schema versions < 1.4 where Vulnerabilites were possible through a schema
extension (in XML only).

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property organizations: SortedSet[OrganizationalEntity]

	The organizations credited with vulnerability discovery.

	Returns:
	Set of OrganizationalEntity

	
property individuals: SortedSet[OrganizationalContact]

	The individuals, not associated with organizations, that are credited with vulnerability discovery.

	Returns:
	Set of OrganizationalContact

	
class cyclonedx.model.vulnerability.Vulnerability(*, bom_ref: str | cyclonedx.model.bom_ref.BomRef | None = None, id: str | None = None, source: VulnerabilitySource | None = None, references: Iterable[VulnerabilityReference] | None = None, ratings: Iterable[VulnerabilityRating] | None = None, cwes: Iterable[int] | None = None, description: str | None = None, detail: str | None = None, recommendation: str | None = None, advisories: Iterable[VulnerabilityAdvisory] | None = None, created: datetime.datetime | None = None, published: datetime.datetime | None = None, updated: datetime.datetime | None = None, credits: VulnerabilityCredits | None = None, tools: Iterable[cyclonedx.model.Tool] | None = None, analysis: VulnerabilityAnalysis | None = None, affects: Iterable[BomTarget] | None = None, properties: Iterable[cyclonedx.model.Property] | None = None)

	Class that models the vulnerabilityType complex type in the CycloneDX schema (version >= 1.4).

This class also provides data support for schema versions < 1.4 where Vulnerabilites were possible through a schema
extension (in XML only).

Note

See the CycloneDX schema: https://cyclonedx.org/docs/1.4/#type_vulnerabilityType

	
property bom_ref: cyclonedx.model.bom_ref.BomRef

	Get the unique reference for this Vulnerability in this BOM.

If a value was not provided in the constructor, a UUIDv4 will have been assigned.

	Returns:
	BomRef

	
property id: str | None

	The identifier that uniquely identifies the vulnerability. For example: CVE-2021-39182.

	Returns:
	str if set else None

	
property source: VulnerabilitySource | None

	The source that published the vulnerability.

	Returns:
	VulnerabilitySource if set else None

	
property references: SortedSet[VulnerabilityReference]

	Zero or more pointers to vulnerabilities that are the equivalent of the vulnerability specified. Often times,
the same vulnerability may exist in multiple sources of vulnerability intelligence, but have different
identifiers. References provides a way to correlate vulnerabilities across multiple sources of vulnerability
intelligence.

	Returns:
	Set of VulnerabilityReference

	
property ratings: SortedSet[VulnerabilityRating]

	List of vulnerability ratings.

	Returns:
	Set of VulnerabilityRating

	
property cwes: SortedSet[int]

	A list of CWE (Common Weakness Enumeration) identifiers.

Note

See https://cwe.mitre.org/

	Returns:
	Set of int

	
property description: str | None

	A description of the vulnerability as provided by the source.

	Returns:
	str if set else None

	
property detail: str | None

	If available, an in-depth description of the vulnerability as provided by the source organization. Details
often include examples, proof-of-concepts, and other information useful in understanding root cause.

	Returns:
	str if set else None

	
property recommendation: str | None

	Recommendations of how the vulnerability can be remediated or mitigated.

	Returns:
	str if set else None

	
property advisories: SortedSet[VulnerabilityAdvisory]

	Advisories relating to the Vulnerability.

	Returns:
	Set of VulnerabilityAdvisory

	
property created: datetime.datetime | None

	The date and time (timestamp) when the vulnerability record was created in the vulnerability database.

	Returns:
	datetime if set else None

	
property published: datetime.datetime | None

	The date and time (timestamp) when the vulnerability record was first published.

	Returns:
	datetime if set else None

	
property updated: datetime.datetime | None

	The date and time (timestamp) when the vulnerability record was last updated.

	Returns:
	datetime if set else None

	
property credits: VulnerabilityCredits | None

	Individuals or organizations credited with the discovery of the vulnerability.

	Returns:
	VulnerabilityCredits if set else None

	
property tools: SortedSet[Tool]

	The tool(s) used to identify, confirm, or score the vulnerability.

	Returns:
	Set of Tool

	
property analysis: VulnerabilityAnalysis | None

	Analysis of the Vulnerability in your context.

	Returns:
	VulnerabilityAnalysis if set else None

	
property affects: SortedSet[BomTarget]

	The components or services that are affected by the vulnerability.

	Returns:
	Set of BomTarget

	
property properties: SortedSet[Property]

	Provides the ability to document properties in a key/value store. This provides flexibility to include data not
officially supported in the standard without having to use additional namespaces or create extensions.

	Return:
	Set of Property

 cyclonedx.output

cyclonedx.output

Set of classes and methods for outputting our libraries internal Bom model to CycloneDX documents in varying formats
and according to different versions of the CycloneDX schema standard.

Submodules

	cyclonedx.output.json

	cyclonedx.output.xml

Package Contents

Classes

	BaseOutput

	Helper class that provides a standard way to create an ABC using

	BomRefDiscriminator

	

Functions

	make_outputter(…)

	Helper method to quickly get the correct output class/formatter.

	
class cyclonedx.output.BaseOutput(bom: cyclonedx.model.bom.Bom, **kwargs: int)

	Bases: abc.ABC

Helper class that provides a standard way to create an ABC using
inheritance.

	
abstract property schema_version: cyclonedx.schema.SchemaVersion

	

	
abstract property output_format: cyclonedx.schema.OutputFormat

	

	
property generated: bool

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
abstract generate(force_regeneration: bool = False) → None

	

	
abstract output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
cyclonedx.output.make_outputter(bom: cyclonedx.model.bom.Bom, output_format: Literal[cyclonedx.schema.OutputFormat.JSON], schema_version: cyclonedx.schema.SchemaVersion) → json.Json

	
cyclonedx.output.make_outputter(bom: cyclonedx.model.bom.Bom, output_format: Literal[cyclonedx.schema.OutputFormat.XML], schema_version: cyclonedx.schema.SchemaVersion) → xml.Xml

	
cyclonedx.output.make_outputter(bom: cyclonedx.model.bom.Bom, output_format: cyclonedx.schema.OutputFormat, schema_version: cyclonedx.schema.SchemaVersion) → xml.Xml | json.Json

	Helper method to quickly get the correct output class/formatter.

Pass in your BOM and optionally an output format and schema version (defaults to XML and latest schema version).

Raises error when no instance could be made.

	Parameters:

	
	bom – Bom

	output_format – OutputFormat

	schema_version – SchemaVersion

	Returns:

	BaseOutput

	
class cyclonedx.output.BomRefDiscriminator(bomrefs: Iterable[cyclonedx.model.bom_ref.BomRef], prefix: str = 'BomRef')

	
	
discriminate() → None

	

	
reset() → None

	

	
classmethod from_bom(bom: cyclonedx.model.bom.Bom, prefix: str = 'BomRef') → BomRefDiscriminator

	

 cyclonedx.output.json

cyclonedx.output.json

Module Contents

Classes

	Json

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot0

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot1

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot2

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot3

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot4

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot5

	Helper class that provides a standard way to create an ABC using

	JsonV1Dot6

	Helper class that provides a standard way to create an ABC using

Attributes

	BY_SCHEMA_VERSION

	

	
class cyclonedx.output.json.Json(bom: cyclonedx.model.bom.Bom)

	Bases: cyclonedx.output.BaseOutput, cyclonedx.schema.schema.BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot0(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot0

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot1(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot1

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot2(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot2

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot3(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot3

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot4(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot4

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot5(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot5

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
class cyclonedx.output.json.JsonV1Dot6(bom: cyclonedx.model.bom.Bom)

	Bases: Json, cyclonedx.schema.schema.SchemaVersion1Dot6

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	

	
property generated: bool

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_bom() → cyclonedx.model.bom.Bom

	

	
set_bom(bom: cyclonedx.model.bom.Bom) → None

	

	
output_to_file(filename: str, allow_overwrite: bool = False, *, indent: int | str | None = None, **kwargs: Any) → None

	

	
cyclonedx.output.json.BY_SCHEMA_VERSION: Dict[cyclonedx.schema.SchemaVersion, Type[Json]]

	

 cyclonedx.output.xml

cyclonedx.output.xml

Module Contents

Classes

	Xml

	

	XmlV1Dot0

	

	XmlV1Dot1

	

	XmlV1Dot2

	

	XmlV1Dot3

	

	XmlV1Dot4

	

	XmlV1Dot5

	

	XmlV1Dot6

	

Attributes

	BY_SCHEMA_VERSION

	

	
class cyclonedx.output.xml.Xml(bom: cyclonedx.model.bom.Bom)

	Bases: cyclonedx.schema.schema.BaseSchemaVersion, cyclonedx.output.BaseOutput

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot0(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot0

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot1(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot1

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot2(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot2

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot3(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot3

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot4(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot4

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot5(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot5

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
class cyclonedx.output.xml.XmlV1Dot6(bom: cyclonedx.model.bom.Bom)

	Bases: Xml, cyclonedx.schema.schema.SchemaVersion1Dot6

	
property schema_version: cyclonedx.schema.SchemaVersion

	

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

	
generate(force_regeneration: bool = False) → None

	

	
output_as_string(*, indent: int | str | None = None, **kwargs: Any) → str

	

	
get_target_namespace() → str

	

	
cyclonedx.output.xml.BY_SCHEMA_VERSION: Dict[cyclonedx.schema.SchemaVersion, Type[Xml]]

	

 cyclonedx.schema

cyclonedx.schema

Submodules

	cyclonedx.schema.schema

Package Contents

Classes

	OutputFormat

	Output formats.

	SchemaVersion

	Schema version.

	
class cyclonedx.schema.OutputFormat(*args, **kwds)

	Bases: enum.Enum

Output formats.

Cases are hashable.

	Do not rely on the actual/literal values, just use enum cases, like so:
	my_of = OutputFormat.XML

	
JSON

	

	
XML

	

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

	
class cyclonedx.schema.SchemaVersion(*args, **kwds)

	Bases: enum.Enum

Schema version.

Cases are hashable.
Cases are comparable(!=,>=,>,==,<,<=)

	Do not rely on the actual/literal values, just use enum cases, like so:
	my_sv = SchemaVersion.V1_3

	
V1_6 = (1, 6)

	

	
V1_5 = (1, 5)

	

	
V1_4 = (1, 4)

	

	
V1_3 = (1, 3)

	

	
V1_2 = (1, 2)

	

	
V1_1 = (1, 1)

	

	
V1_0 = (1, 0)

	

	
classmethod from_version(version: str) → _SV

	Return instance based of a version string - e.g. 1.4

	
to_version() → str

	Return as a version string - e.g. 1.4

	
name()

	The name of the Enum member.

	
value()

	The value of the Enum member.

 cyclonedx.schema.schema

cyclonedx.schema.schema

Module Contents

Classes

	BaseSchemaVersion

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot6

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot5

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot4

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot3

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot2

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot1

	Helper class that provides a standard way to create an ABC using

	SchemaVersion1Dot0

	Helper class that provides a standard way to create an ABC using

Attributes

	SCHEMA_VERSIONS

	

	
class cyclonedx.schema.schema.BaseSchemaVersion

	Bases: abc.ABC, serializable.ViewType

Helper class that provides a standard way to create an ABC using
inheritance.

	
abstract property schema_version_enum: cyclonedx.schema.SchemaVersion

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot6

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_6]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot5

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_5]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot4

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_4]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot3

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_3]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot2

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_2]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot1

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_1]

	

	
get_schema_version() → str

	

	
class cyclonedx.schema.schema.SchemaVersion1Dot0

	Bases: BaseSchemaVersion

Helper class that provides a standard way to create an ABC using
inheritance.

	
property schema_version_enum: Literal[cyclonedx.schema.SchemaVersion.V1_0]

	

	
get_schema_version() → str

	

	
cyclonedx.schema.schema.SCHEMA_VERSIONS: Dict[cyclonedx.schema.SchemaVersion, Type[BaseSchemaVersion]]

	

 cyclonedx.serialization

cyclonedx.serialization

Set of helper classes for use with serializable when conducting (de-)serialization.

Package Contents

Classes

	BomRefHelper

	

	PackageUrl

	

	UrnUuidHelper

	

	LicenseRepositoryHelper

	

	
class cyclonedx.serialization.BomRefHelper

	Bases: serializable.helpers.BaseHelper

	
classmethod serialize(o: Any) → str | None

	

	
classmethod deserialize(o: Any) → cyclonedx.model.bom_ref.BomRef

	

	
class cyclonedx.serialization.PackageUrl

	Bases: serializable.helpers.BaseHelper

	
classmethod serialize(o: Any) → str

	

	
classmethod deserialize(o: Any) → packageurl.PackageURL

	

	
class cyclonedx.serialization.UrnUuidHelper

	Bases: serializable.helpers.BaseHelper

	
classmethod serialize(o: Any) → str

	

	
classmethod deserialize(o: Any) → uuid.UUID

	

	
class cyclonedx.serialization.LicenseRepositoryHelper

	Bases: serializable.helpers.BaseHelper

	
classmethod json_normalize(o: cyclonedx.model.license.LicenseRepository, *, view: Type[serializable.ViewType] | None, **__: Any) → Any

	

	
classmethod json_denormalize(o: List[Dict[str, Any]], **__: Any) → cyclonedx.model.license.LicenseRepository

	

	
classmethod xml_normalize(o: cyclonedx.model.license.LicenseRepository, *, element_name: str, view: Type[serializable.ViewType] | None, xmlns: str | None, **__: Any) → xml.etree.ElementTree.Element | None

	

	
classmethod xml_denormalize(o: xml.etree.ElementTree.Element, default_ns: str | None, **__: Any) → cyclonedx.model.license.LicenseRepository

	

 cyclonedx.validation

cyclonedx.validation

Submodules

	cyclonedx.validation.json

	cyclonedx.validation.model

	cyclonedx.validation.xml

Package Contents

Classes

	ValidationError

	Validation failed with this specific error.

	SchemabasedValidator

	Schema-based Validator protocol

	BaseSchemabasedValidator

	Base Schema-based Validator

Functions

	make_schemabased_validator(…)

	get the default Schema-based Validator for a certain :class:OutputFormat.

	
class cyclonedx.validation.ValidationError(data: Any)

	Validation failed with this specific error.

Use data to access the content.

	
data: Any

	

	
class cyclonedx.validation.SchemabasedValidator

	Bases: Protocol

Schema-based Validator protocol

	
validate_str(data: str) → ValidationError | None

	Validate a string

	Parameters:

	data – the data string to validate

	Returns:

	validation error

	Retval None:

	if data is valid

	Retval ValidationError:

	if data is invalid

	
class cyclonedx.validation.BaseSchemabasedValidator(schema_version: cyclonedx.schema.SchemaVersion)

	Bases: abc.ABC, SchemabasedValidator

Base Schema-based Validator

	
property schema_version: cyclonedx.schema.SchemaVersion

	get the schema version.

	
abstract property output_format: cyclonedx.schema.OutputFormat

	get the format.

	
validate_str(data: str) → ValidationError | None

	Validate a string

	Parameters:

	data – the data string to validate

	Returns:

	validation error

	Retval None:

	if data is valid

	Retval ValidationError:

	if data is invalid

	
cyclonedx.validation.make_schemabased_validator(output_format: Literal[cyclonedx.schema.OutputFormat.JSON], schema_version: cyclonedx.schema.SchemaVersion) → json.JsonValidator

	
cyclonedx.validation.make_schemabased_validator(output_format: Literal[cyclonedx.schema.OutputFormat.XML], schema_version: cyclonedx.schema.SchemaVersion) → xml.XmlValidator

	
cyclonedx.validation.make_schemabased_validator(output_format: cyclonedx.schema.OutputFormat, schema_version: cyclonedx.schema.SchemaVersion) → json.JsonValidator | xml.XmlValidator

	get the default Schema-based Validator for a certain :class:OutputFormat.

Raises error when no instance could be made.

 cyclonedx.validation.json

cyclonedx.validation.json

Module Contents

Classes

	JsonValidator

	Validator for CycloneDX documents in JSON format.

	JsonStrictValidator

	Strict validator for CycloneDX documents in JSON format.

	
class cyclonedx.validation.json.JsonValidator(schema_version: cyclonedx.schema.SchemaVersion)

	Bases: _BaseJsonValidator, cyclonedx.validation.BaseSchemabasedValidator, cyclonedx.validation.SchemabasedValidator

Validator for CycloneDX documents in JSON format.

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	get the format.

	
property schema_version: cyclonedx.schema.SchemaVersion

	get the schema version.

	
validate_str(data: str) → ValidationError | None

	Validate a string

	Parameters:

	data – the data string to validate

	Returns:

	validation error

	Retval None:

	if data is valid

	Retval ValidationError:

	if data is invalid

	
class cyclonedx.validation.json.JsonStrictValidator(schema_version: cyclonedx.schema.SchemaVersion)

	Bases: _BaseJsonValidator, cyclonedx.validation.BaseSchemabasedValidator, cyclonedx.validation.SchemabasedValidator

Strict validator for CycloneDX documents in JSON format.

In contrast to JsonValidator,
the document must not have additional or unknown JSON properties.

	
property output_format: Literal[cyclonedx.schema.OutputFormat.JSON]

	get the format.

	
property schema_version: cyclonedx.schema.SchemaVersion

	get the schema version.

	
validate_str(data: str) → ValidationError | None

	Validate a string

	Parameters:

	data – the data string to validate

	Returns:

	validation error

	Retval None:

	if data is valid

	Retval ValidationError:

	if data is invalid

 cyclonedx.validation.model

cyclonedx.validation.model

 cyclonedx.validation.xml

cyclonedx.validation.xml

Module Contents

Classes

	XmlValidator

	Validator for CycloneDX documents in XML format.

	
class cyclonedx.validation.xml.XmlValidator(schema_version: cyclonedx.schema.SchemaVersion)

	Bases: _BaseXmlValidator, cyclonedx.validation.BaseSchemabasedValidator, cyclonedx.validation.SchemabasedValidator

Validator for CycloneDX documents in XML format.

	
property output_format: Literal[cyclonedx.schema.OutputFormat.XML]

	

 cyclonedx.spdx

cyclonedx.spdx

Module Contents

Functions

	is_supported_id(→ bool)

	Validate a SPDX-ID according to current spec.

	fixup_id(→ Optional[str])

	Fixup a SPDX-ID.

	is_compound_expression(→ bool)

	Validate compound expression.

	
cyclonedx.spdx.is_supported_id(value: str) → bool

	Validate a SPDX-ID according to current spec.

	
cyclonedx.spdx.fixup_id(value: str) → str | None

	Fixup a SPDX-ID.

	Returns:

	repaired value string, or None if fixup was unable to help.

	
cyclonedx.spdx.is_compound_expression(value: str) → bool

	Validate compound expression.

Note

Utilizes license-expression library [https://github.com/nexB/license-expression] to
validate SPDX compound expression according to SPDX license expression spec [https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/].

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cyclonedx	

 	
 	
 cyclonedx._internal	

 	
 	
 cyclonedx._internal.compare	

 	
 	
 cyclonedx._internal.hash	

 	
 	
 cyclonedx._internal.time	

 	
 	
 cyclonedx.exception	

 	
 	
 cyclonedx.exception.factory	

 	
 	
 cyclonedx.exception.model	

 	
 	
 cyclonedx.exception.output	

 	
 	
 cyclonedx.exception.serialization	

 	
 	
 cyclonedx.factory	

 	
 	
 cyclonedx.factory.license	

 	
 	
 cyclonedx.model	

 	
 	
 cyclonedx.model.bom	

 	
 	
 cyclonedx.model.bom_ref	

 	
 	
 cyclonedx.model.component	

 	
 	
 cyclonedx.model.contact	

 	
 	
 cyclonedx.model.crypto	

 	
 	
 cyclonedx.model.dependency	

 	
 	
 cyclonedx.model.impact_analysis	

 	
 	
 cyclonedx.model.issue	

 	
 	
 cyclonedx.model.license	

 	
 	
 cyclonedx.model.release_note	

 	
 	
 cyclonedx.model.service	

 	
 	
 cyclonedx.model.vulnerability	

 	
 	
 cyclonedx.output	

 	
 	
 cyclonedx.output.json	

 	
 	
 cyclonedx.output.xml	

 	
 	
 cyclonedx.schema	

 	
 	
 cyclonedx.schema._res	

 	
 	
 cyclonedx.schema.schema	

 	
 	
 cyclonedx.serialization	

 	
 	
 cyclonedx.spdx	

 	
 	
 cyclonedx.validation	

 	
 	
 cyclonedx.validation.json	

 	
 	
 cyclonedx.validation.model	

 	
 	
 cyclonedx.validation.xml	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	acknowledgement (cyclonedx.model.license.DisjunctiveLicense property)

 	(cyclonedx.model.license.LicenseExpression property)

 	activation_date (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	ACTIVE (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	add_note() (cyclonedx.exception.CycloneDxException method)

 	(cyclonedx.exception.factory.CycloneDxFactoryException method)

 	(cyclonedx.exception.factory.InvalidLicenseExpressionException method)

 	(cyclonedx.exception.factory.InvalidSpdxLicenseException method)

 	(cyclonedx.exception.factory.LicenseChoiceFactoryException method)

 	(cyclonedx.exception.factory.LicenseFactoryException method)

 	(cyclonedx.exception.MissingOptionalDependencyException method)

 	(cyclonedx.exception.serialization.CycloneDxDeserializationException method)

 	(cyclonedx.exception.serialization.CycloneDxSerializationException method)

 	(cyclonedx.exception.serialization.SerializationOfUnexpectedValueException method)

 	(cyclonedx.exception.serialization.SerializationOfUnsupportedComponentTypeException method)

 	ADDITIONAL_DATA (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	address (cyclonedx.model.contact.OrganizationalEntity property)

 	ADVERSARY_MODEL (cyclonedx.model.ExternalReferenceType attribute)

 	ADVISORIES (cyclonedx.model.ExternalReferenceType attribute)

 	advisories (cyclonedx.model.vulnerability.Vulnerability property)

 	AE (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	AFFECTED (cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus attribute)

 	affects (cyclonedx.model.vulnerability.Vulnerability property)

 	alg (cyclonedx.model.HashType property)

 	
 	ALGORITHM (cyclonedx.model.crypto.CryptoAssetType attribute)

 	algorithm_properties (cyclonedx.model.crypto.CryptoProperties property)

 	algorithm_ref (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialSecuredBy property)

 	AlgorithmProperties (class in cyclonedx.model.crypto)

 	algorithms (cyclonedx.model.crypto.ProtocolPropertiesCipherSuite property)

 	aliases (cyclonedx.model.release_note.ReleaseNotes property)

 	analysis (cyclonedx.model.vulnerability.Vulnerability property)

 	ancestors (cyclonedx.model.component.Pedigree property)

 	APPLICATION (cyclonedx.model.component.ComponentType attribute)

 	ARMV7_A (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	ARMV7_M (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	ARMV8_A (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	ARMV8_M (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	ARMV9_A (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	ARMV9_M (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	asset_type (cyclonedx.model.crypto.CryptoProperties property)

 	AttachedText (class in cyclonedx.model)

 	ATTESTATION (cyclonedx.model.ExternalReferenceType attribute)

 	auth (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	authenticated (cyclonedx.model.service.Service property)

 	author (cyclonedx.model.component.Commit property)

 	(cyclonedx.model.component.Component property)

 	authors (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.component.Component property)

B

 	
 	BACKPORT (cyclonedx.model.component.PatchClassification attribute)

 	BASE_64 (cyclonedx.model.Encoding attribute)

 	BaseOutput (class in cyclonedx.output)

 	BaseSchemabasedValidator (class in cyclonedx.validation)

 	BaseSchemaVersion (class in cyclonedx.schema.schema)

 	BI_DIRECTIONAL (cyclonedx.model.DataFlow attribute)

 	BLAKE2B_256 (cyclonedx.model.HashAlgorithm attribute)

 	BLAKE2B_384 (cyclonedx.model.HashAlgorithm attribute)

 	BLAKE2B_512 (cyclonedx.model.HashAlgorithm attribute)

 	BLAKE3 (cyclonedx.model.HashAlgorithm attribute)

 	BLOCK_CIPHER (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	Bom (class in cyclonedx.model.bom)

 	BOM (cyclonedx.model.ExternalReferenceType attribute)

 	BOM_JSON (in module cyclonedx.schema._res)

 	BOM_JSON_STRICT (in module cyclonedx.schema._res)

 	bom_ref (cyclonedx.model.component.Component property)

 	(cyclonedx.model.contact.PostalAddress property)

 	(cyclonedx.model.dependency.Dependable property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	
 	BOM_XML (in module cyclonedx.schema._res)

 	BomGenerationErrorException (class in cyclonedx.exception.output)

 	BomMetaData (class in cyclonedx.model.bom)

 	BomRef (class in cyclonedx.model.bom_ref)

 	BomRefDiscriminator (class in cyclonedx.output)

 	BomRefHelper (class in cyclonedx.serialization)

 	BomTarget (class in cyclonedx.model.vulnerability)

 	BomTargetVersionRange (class in cyclonedx.model.vulnerability)

 	BUILD_META (cyclonedx.model.ExternalReferenceType attribute)

 	BUILD_SYSTEM (cyclonedx.model.ExternalReferenceType attribute)

 	BY_SCHEMA_VERSION (in module cyclonedx.output.json)

 	(in module cyclonedx.output.xml)

C

 	
 	CAN_NOT_FIX (cyclonedx.model.impact_analysis.ImpactAnalysisResponse attribute)

 	capitalize() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	casefold() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	CBC (cyclonedx.model.crypto.CryptoMode attribute)

 	CC_EAL1 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL1_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL2 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL2_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL3 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL3_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL4 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL4_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL5 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL5_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL6 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL6_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL7 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CC_EAL7_PLUS (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	CCM (cyclonedx.model.crypto.CryptoMode attribute)

 	center() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	CERTIFICATE (cyclonedx.model.crypto.CryptoAssetType attribute)

 	certificate_extension (cyclonedx.model.crypto.CertificateProperties property)

 	certificate_format (cyclonedx.model.crypto.CertificateProperties property)

 	certificate_properties (cyclonedx.model.crypto.CryptoProperties property)

 	CertificateProperties (class in cyclonedx.model.crypto)

 	certification_levels (cyclonedx.model.crypto.AlgorithmProperties property)

 	CERTIFICATION_REPORT (cyclonedx.model.ExternalReferenceType attribute)

 	CFB (cyclonedx.model.crypto.CryptoMode attribute)

 	CHAT (cyclonedx.model.ExternalReferenceType attribute)

 	CHERRY_PICK (cyclonedx.model.component.PatchClassification attribute)

 	cipher_suites (cyclonedx.model.crypto.ProtocolProperties property)

 	CIPHERTEXT (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	classical_security_level (cyclonedx.model.crypto.AlgorithmProperties property)

 	classification (cyclonedx.model.DataClassification property)

 	CODE_NOT_PRESENT (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	CODE_NOT_REACHABLE (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	CODIFIED_INFRASTRUCTURE (cyclonedx.model.ExternalReferenceType attribute)

 	COMBINER (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	comment (cyclonedx.model.ExternalReference property)

 	Commit (class in cyclonedx.model.component)

 	commits (cyclonedx.model.component.Pedigree property)

 	committer (cyclonedx.model.component.Commit property)

 	ComparableDict (class in cyclonedx._internal.compare)

 	ComparablePackageURL (class in cyclonedx._internal.compare)

 	ComparablePackageURL.tuple (class in cyclonedx._internal.compare)

 	ComparableTuple (class in cyclonedx._internal.compare)

 	ComparableTuple.tuple (class in cyclonedx._internal.compare)

 	Component (class in cyclonedx.model.component)

 	component (cyclonedx.model.bom.BomMetaData property)

 	COMPONENT_ANALYSIS_REPORT (cyclonedx.model.ExternalReferenceType attribute)

 	ComponentEvidence (class in cyclonedx.model.component)

 	components (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.component.Component property)

 	ComponentScope (class in cyclonedx.model.component)

 	ComponentType (class in cyclonedx.model.component)

 	COMPROMISED (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	CONCLUDED (cyclonedx.model.license.LicenseAcknowledgement attribute)

 	CONFIGURATION (cyclonedx.model.ExternalReferenceType attribute)

 	contacts (cyclonedx.model.contact.OrganizationalEntity property)

 	CONTAINER (cyclonedx.model.component.ComponentType attribute)

 	content (cyclonedx.model.AttachedText property)

 	(cyclonedx.model.HashType property)

 	(cyclonedx.model.NoteText property)

 	content_type (cyclonedx.model.AttachedText property)

 	(cyclonedx.model.NoteText property)

 	Copyright (class in cyclonedx.model)

 	
 	copyright (cyclonedx.model.component.Component property)

 	(cyclonedx.model.component.ComponentEvidence property)

 	count() (cyclonedx._internal.compare.ComparablePackageURL method)

 	(cyclonedx._internal.compare.ComparablePackageURL.tuple method)

 	(cyclonedx._internal.compare.ComparableTuple method)

 	(cyclonedx._internal.compare.ComparableTuple.tuple method)

 	(cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	country (cyclonedx.model.contact.PostalAddress property)

 	cpe (cyclonedx.model.component.Component property)

 	created (cyclonedx.model.vulnerability.Vulnerability property)

 	creation_date (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	CREDENTIAL (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	credits (cyclonedx.model.vulnerability.Vulnerability property)

 	CRITICAL (cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	crypto_functions (cyclonedx.model.crypto.AlgorithmProperties property)

 	crypto_properties (cyclonedx.model.component.Component property)

 	CryptoAssetType (class in cyclonedx.model.crypto)

 	CryptoCertificationLevel (class in cyclonedx.model.crypto)

 	CryptoExecutionEnvironment (class in cyclonedx.model.crypto)

 	CryptoFunction (class in cyclonedx.model.crypto)

 	CRYPTOGRAPHIC_ASSET (cyclonedx.model.component.ComponentType attribute)

 	CryptoImplementationPlatform (class in cyclonedx.model.crypto)

 	CryptoMode (class in cyclonedx.model.crypto)

 	CryptoPadding (class in cyclonedx.model.crypto)

 	CryptoPrimitive (class in cyclonedx.model.crypto)

 	CryptoProperties (class in cyclonedx.model.crypto)

 	CTR (cyclonedx.model.crypto.CryptoMode attribute)

 	curve (cyclonedx.model.crypto.AlgorithmProperties property)

 	CVSS_V2 (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	CVSS_V3 (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	CVSS_V3_1 (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	CVSS_V4 (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	cwes (cyclonedx.model.vulnerability.Vulnerability property)

 	
 cyclonedx

 	module

 	
 cyclonedx._internal

 	module

 	
 cyclonedx._internal.compare

 	module

 	
 cyclonedx._internal.hash

 	module

 	
 cyclonedx._internal.time

 	module

 	
 cyclonedx.exception

 	module

 	
 cyclonedx.exception.factory

 	module

 	
 cyclonedx.exception.model

 	module

 	
 cyclonedx.exception.output

 	module

 	
 cyclonedx.exception.serialization

 	module

 	
 cyclonedx.factory

 	module

 	
 cyclonedx.factory.license

 	module

 	
 cyclonedx.model

 	module

 	
 cyclonedx.model.bom

 	module

 	
 cyclonedx.model.bom_ref

 	module

 	
 cyclonedx.model.component

 	module

 	
 cyclonedx.model.contact

 	module

 	
 cyclonedx.model.crypto

 	module

 	
 cyclonedx.model.dependency

 	module

 	
 cyclonedx.model.impact_analysis

 	module

 	
 cyclonedx.model.issue

 	module

 	
 cyclonedx.model.license

 	module

 	
 cyclonedx.model.release_note

 	module

 	
 cyclonedx.model.service

 	module

 	
 cyclonedx.model.vulnerability

 	module

 	
 cyclonedx.output

 	module

 	
 cyclonedx.output.json

 	module

 	
 cyclonedx.output.xml

 	module

 	
 cyclonedx.schema

 	module

 	
 cyclonedx.schema._res

 	module

 	
 cyclonedx.schema.schema

 	module

 	
 cyclonedx.serialization

 	module

 	
 cyclonedx.spdx

 	module

 	
 cyclonedx.validation

 	module

 	
 cyclonedx.validation.json

 	module

 	
 cyclonedx.validation.model

 	module

 	
 cyclonedx.validation.xml

 	module

 	CycloneDxDeserializationException

 	CycloneDxDeserializationException.args (class in cyclonedx.exception.serialization)

 	CycloneDxException

 	CycloneDxException.args (class in cyclonedx.exception)

 	CycloneDxFactoryException

 	CycloneDxFactoryException.args (class in cyclonedx.exception.factory)

 	CycloneDxModelException (class in cyclonedx.exception.model)

 	CycloneDxSerializationException

 	CycloneDxSerializationException.args (class in cyclonedx.exception.serialization)

D

 	
 	DATA (cyclonedx.model.component.ComponentType attribute)

 	data (cyclonedx.model.service.Service property)

 	(cyclonedx.validation.ValidationError attribute)

 	DataClassification (class in cyclonedx.model)

 	DataFlow (class in cyclonedx.model)

 	DEACTIVATED (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	DECAPSULATE (cyclonedx.model.crypto.CryptoFunction attribute)

 	DECLARED (cyclonedx.model.license.LicenseAcknowledgement attribute)

 	DECRYPT (cyclonedx.model.crypto.CryptoFunction attribute)

 	DEFAULT_CONTENT_TYPE (cyclonedx.model.AttachedText attribute)

 	(cyclonedx.model.NoteText attribute)

 	DEFECT (cyclonedx.model.issue.IssueClassification attribute)

 	Dependable (class in cyclonedx.model.dependency)

 	dependencies (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.dependency.Dependency property)

 	dependencies_as_bom_refs() (cyclonedx.model.dependency.Dependency method)

 	Dependency (class in cyclonedx.model.dependency)

 	descendants (cyclonedx.model.component.Pedigree property)

 	description (cyclonedx.model.component.Component property)

 	(cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	
 	deserialize() (cyclonedx.model.component.OmniborId class method)

 	(cyclonedx.model.component.Swhid class method)

 	(cyclonedx.model.XsUri class method)

 	(cyclonedx.serialization.BomRefHelper class method)

 	(cyclonedx.serialization.PackageUrl class method)

 	(cyclonedx.serialization.UrnUuidHelper class method)

 	DESTROYED (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	detail (cyclonedx.model.vulnerability.Vulnerability property)

 	(cyclonedx.model.vulnerability.VulnerabilityAnalysis property)

 	DEVICE (cyclonedx.model.component.ComponentType attribute)

 	DEVICE_DRIVER (cyclonedx.model.component.ComponentType attribute)

 	Diff (class in cyclonedx.model.component)

 	diff (cyclonedx.model.component.Patch property)

 	DIGEST (cyclonedx.model.crypto.CryptoFunction attribute)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	DIGITAL_SIGNATURE (cyclonedx.model.ExternalReferenceType attribute)

 	discriminate() (cyclonedx.output.BomRefDiscriminator method)

 	DisjunctiveLicense (class in cyclonedx.model.license)

 	DISTRIBUTION (cyclonedx.model.ExternalReferenceType attribute)

 	DISTRIBUTION_INTAKE (cyclonedx.model.ExternalReferenceType attribute)

 	DOCUMENTATION (cyclonedx.model.ExternalReferenceType attribute)

 	DRBG (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	DYNAMIC_ANALYSIS_REPORT (cyclonedx.model.ExternalReferenceType attribute)

E

 	
 	ECB (cyclonedx.model.crypto.CryptoMode attribute)

 	ELECTRONIC_SIGNATURE (cyclonedx.model.ExternalReferenceType attribute)

 	email (cyclonedx.model.contact.OrganizationalContact property)

 	(cyclonedx.model.IdentifiableAction property)

 	ENCAPSULATE (cyclonedx.model.crypto.CryptoFunction attribute)

 	encode() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	Encoding (class in cyclonedx.model)

 	encoding (cyclonedx.model.AttachedText property)

 	(cyclonedx.model.NoteText property)

 	encr (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	ENCRYPT (cyclonedx.model.crypto.CryptoFunction attribute)

 	endpoints (cyclonedx.model.service.Service property)

 	endswith() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	ENHANCEMENT (cyclonedx.model.issue.IssueClassification attribute)

 	esn (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	evidence (cyclonedx.model.component.Component property)

 	EVIDENCE (cyclonedx.model.ExternalReferenceType attribute)

 	EXCLUDED (cyclonedx.model.component.ComponentScope attribute)

 	execution_environment (cyclonedx.model.crypto.AlgorithmProperties property)

 	expandtabs() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	expiration_date (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	EXPLOITABILITY_STATEMENT (cyclonedx.model.ExternalReferenceType attribute)

 	EXPLOITABLE (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	external_references (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.component.Component property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.Tool property)

 	ExternalReference (class in cyclonedx.model)

 	ExternalReferenceType (class in cyclonedx.model)

F

 	
 	FALSE_POSITIVE (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	featured_image (cyclonedx.model.release_note.ReleaseNotes property)

 	FILE (cyclonedx.model.component.ComponentType attribute)

 	file_sha1sum() (in module cyclonedx._internal.hash)

 	find() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	FIPS140_1_L1 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_1_L2 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_1_L3 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_1_L4 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_2_L1 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_2_L2 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_2_L3 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_2_L4 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_3_L1 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_3_L2 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_3_L3 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIPS140_3_L4 (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	FIRMWARE (cyclonedx.model.component.ComponentType attribute)

 	fixup_id() (in module cyclonedx.spdx)

 	flow (cyclonedx.model.DataClassification property)

 	for_file() (cyclonedx.model.component.Component static method)

 	format (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	format() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	format_map() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	FormatNotSupportedException (class in cyclonedx.exception.output)

 	FORMULATION (cyclonedx.model.ExternalReferenceType attribute)

 	FRAMEWORK (cyclonedx.model.component.ComponentType attribute)

 	from_bom() (cyclonedx.output.BomRefDiscriminator class method)

 	from_composite_str() (cyclonedx.model.HashType static method)

 	from_hashlib_alg() (cyclonedx.model.HashType static method)

 	from_version() (cyclonedx.schema.SchemaVersion class method)

G

 	
 	GCM (cyclonedx.model.crypto.CryptoMode attribute)

 	GENERATE (cyclonedx.model.crypto.CryptoFunction attribute)

 	generate() (cyclonedx.output.BaseOutput method)

 	(cyclonedx.output.json.Json method)

 	(cyclonedx.output.json.JsonV1Dot0 method)

 	(cyclonedx.output.json.JsonV1Dot1 method)

 	(cyclonedx.output.json.JsonV1Dot2 method)

 	(cyclonedx.output.json.JsonV1Dot3 method)

 	(cyclonedx.output.json.JsonV1Dot4 method)

 	(cyclonedx.output.json.JsonV1Dot5 method)

 	(cyclonedx.output.json.JsonV1Dot6 method)

 	(cyclonedx.output.xml.Xml method)

 	(cyclonedx.output.xml.XmlV1Dot0 method)

 	(cyclonedx.output.xml.XmlV1Dot1 method)

 	(cyclonedx.output.xml.XmlV1Dot2 method)

 	(cyclonedx.output.xml.XmlV1Dot3 method)

 	(cyclonedx.output.xml.XmlV1Dot4 method)

 	(cyclonedx.output.xml.XmlV1Dot5 method)

 	(cyclonedx.output.xml.XmlV1Dot6 method)

 	generated (cyclonedx.output.BaseOutput property)

 	(cyclonedx.output.json.Json property)

 	(cyclonedx.output.json.JsonV1Dot0 property)

 	(cyclonedx.output.json.JsonV1Dot1 property)

 	(cyclonedx.output.json.JsonV1Dot2 property)

 	(cyclonedx.output.json.JsonV1Dot3 property)

 	(cyclonedx.output.json.JsonV1Dot4 property)

 	(cyclonedx.output.json.JsonV1Dot5 property)

 	(cyclonedx.output.json.JsonV1Dot6 property)

 	GENERIC (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	get_all_nested_components() (cyclonedx.model.component.Component method)

 	get_bom() (cyclonedx.output.BaseOutput method)

 	(cyclonedx.output.json.Json method)

 	(cyclonedx.output.json.JsonV1Dot0 method)

 	(cyclonedx.output.json.JsonV1Dot1 method)

 	(cyclonedx.output.json.JsonV1Dot2 method)

 	(cyclonedx.output.json.JsonV1Dot3 method)

 	(cyclonedx.output.json.JsonV1Dot4 method)

 	(cyclonedx.output.json.JsonV1Dot5 method)

 	(cyclonedx.output.json.JsonV1Dot6 method)

 	
 	get_component_by_purl() (cyclonedx.model.bom.Bom method)

 	get_from_cvss_scores() (cyclonedx.model.vulnerability.VulnerabilitySeverity static method)

 	get_from_vector() (cyclonedx.model.vulnerability.VulnerabilityScoreSource static method)

 	get_localised_vector() (cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	get_now_utc() (in module cyclonedx._internal.time)

 	get_pypi_url() (cyclonedx.model.component.Component method)

 	get_schema_version() (cyclonedx.schema.schema.BaseSchemaVersion method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot0 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot1 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot2 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot3 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot4 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot5 method)

 	(cyclonedx.schema.schema.SchemaVersion1Dot6 method)

 	get_target_namespace() (cyclonedx.output.xml.Xml method)

 	(cyclonedx.output.xml.XmlV1Dot0 method)

 	(cyclonedx.output.xml.XmlV1Dot1 method)

 	(cyclonedx.output.xml.XmlV1Dot2 method)

 	(cyclonedx.output.xml.XmlV1Dot3 method)

 	(cyclonedx.output.xml.XmlV1Dot4 method)

 	(cyclonedx.output.xml.XmlV1Dot5 method)

 	(cyclonedx.output.xml.XmlV1Dot6 method)

 	get_urn_uuid() (cyclonedx.model.bom.Bom method)

 	get_value_pre_1_4() (cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	get_vulnerabilities_for_bom_ref() (cyclonedx.model.bom.Bom method)

 	group (cyclonedx.model.component.Component property)

 	(cyclonedx.model.service.Service property)

H

 	
 	HARDWARE (cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	has_component() (cyclonedx.model.bom.Bom method)

 	has_vulnerabilities() (cyclonedx.model.bom.Bom method)

 	HASH (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	HashAlgorithm (class in cyclonedx.model)

 	
 	hashes (cyclonedx.model.component.Component property)

 	(cyclonedx.model.ExternalReference property)

 	(cyclonedx.model.Tool property)

 	HashType (class in cyclonedx.model)

 	HIGH (cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

I

 	
 	id (cyclonedx.model.component.OmniborId property)

 	(cyclonedx.model.component.Swhid property)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	(cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.license.DisjunctiveLicense property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	(cyclonedx.model.vulnerability.VulnerabilityReference property)

 	IdentifiableAction (class in cyclonedx.model)

 	identifiers (cyclonedx.model.crypto.ProtocolPropertiesCipherSuite property)

 	IKE (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	ikev2_transform_types (cyclonedx.model.crypto.ProtocolProperties property)

 	Ikev2TransformTypes (class in cyclonedx.model.crypto)

 	ImpactAnalysisAffectedStatus (class in cyclonedx.model.impact_analysis)

 	ImpactAnalysisJustification (class in cyclonedx.model.impact_analysis)

 	ImpactAnalysisResponse (class in cyclonedx.model.impact_analysis)

 	ImpactAnalysisState (class in cyclonedx.model.impact_analysis)

 	implementation_platform (cyclonedx.model.crypto.AlgorithmProperties property)

 	IN_TRIAGE (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	INBOUND (cyclonedx.model.DataFlow attribute)

 	index() (cyclonedx._internal.compare.ComparablePackageURL method)

 	(cyclonedx._internal.compare.ComparablePackageURL.tuple method)

 	(cyclonedx._internal.compare.ComparableTuple method)

 	(cyclonedx._internal.compare.ComparableTuple.tuple method)

 	(cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	individuals (cyclonedx.model.vulnerability.VulnerabilityCredits property)

 	INFO (cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	INITIALIZATION_VECTOR (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	integ (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	InvalidLicenseExpressionException

 	InvalidLicenseExpressionException.args (class in cyclonedx.exception.factory)

 	InvalidLocaleTypeException (class in cyclonedx.exception.model)

 	InvalidNistQuantumSecurityLevelException (class in cyclonedx.exception.model)

 	InvalidOmniBorIdException (class in cyclonedx.exception.model)

 	InvalidRelatedCryptoMaterialSizeException (class in cyclonedx.exception.model)

 	InvalidSpdxLicenseException

 	InvalidSpdxLicenseException.args (class in cyclonedx.exception.factory)

 	InvalidSwhidException (class in cyclonedx.exception.model)

 	InvalidUriException (class in cyclonedx.exception.model)

 	IPSEC (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	is_compound_expression() (in module cyclonedx.spdx)

 	is_supported_id() (in module cyclonedx.spdx)

 	isalnum() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isalpha() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isascii() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isdecimal() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isdigit() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	isidentifier() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	islower() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isnumeric() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isprintable() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isspace() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	ISSUE_TRACKER (cyclonedx.model.ExternalReferenceType attribute)

 	IssueClassification (class in cyclonedx.model.issue)

 	issuer_name (cyclonedx.model.crypto.CertificateProperties property)

 	IssueType (class in cyclonedx.model.issue)

 	IssueTypeSource (class in cyclonedx.model.issue)

 	istitle() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	isupper() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

J

 	
 	join() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	JSF (in module cyclonedx.schema._res)

 	Json (class in cyclonedx.output.json)

 	JSON (cyclonedx.schema.OutputFormat attribute)

 	json_denormalize() (cyclonedx.serialization.LicenseRepositoryHelper class method)

 	json_normalize() (cyclonedx.serialization.LicenseRepositoryHelper class method)

 	JsonStrictValidator (class in cyclonedx.validation.json)

 	JsonV1Dot0 (class in cyclonedx.output.json)

 	JsonV1Dot1 (class in cyclonedx.output.json)

 	JsonV1Dot2 (class in cyclonedx.output.json)

 	JsonV1Dot3 (class in cyclonedx.output.json)

 	JsonV1Dot4 (class in cyclonedx.output.json)

 	JsonV1Dot5 (class in cyclonedx.output.json)

 	JsonV1Dot6 (class in cyclonedx.output.json)

 	JsonValidator (class in cyclonedx.validation.json)

 	justification (cyclonedx.model.vulnerability.VulnerabilityAnalysis property)

 	(cyclonedx.model.vulnerability.VulnerabilityRating property)

K

 	
 	KDF (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	ke (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	KEM (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	
 	KEY (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	KEY_AGREE (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	KEYDERIVE (cyclonedx.model.crypto.CryptoFunction attribute)

 	KEYGEN (cyclonedx.model.crypto.CryptoFunction attribute)

L

 	
 	LIBRARY (cyclonedx.model.component.ComponentType attribute)

 	LICENSE (cyclonedx.model.ExternalReferenceType attribute)

 	License (in module cyclonedx.model.license)

 	LicenseAcknowledgement (class in cyclonedx.model.license)

 	LicenseChoiceFactoryException

 	LicenseChoiceFactoryException.args (class in cyclonedx.exception.factory)

 	LicenseExpression (class in cyclonedx.model.license)

 	LicenseExpressionAcknowledgement (in module cyclonedx.model.license)

 	LicenseExpressionAlongWithOthersException (class in cyclonedx.exception.model)

 	LicenseFactory (class in cyclonedx.factory.license)

 	LicenseFactoryException

 	LicenseFactoryException.args (class in cyclonedx.exception.factory)

 	LicenseRepository (class in cyclonedx.model.license)

 	LicenseRepositoryHelper (class in cyclonedx.serialization)

 	licenses (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.component.Component property)

 	(cyclonedx.model.component.ComponentEvidence property)

 	(cyclonedx.model.service.Service property)

 	ljust() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	locale (cyclonedx.model.Note property)

 	locality (cyclonedx.model.contact.PostalAddress property)

 	LOG (cyclonedx.model.ExternalReferenceType attribute)

 	LOW (cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	lower() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	lstrip() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

M

 	
 	MAC (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	MACHINE_LEARNING_MODEL (cyclonedx.model.component.ComponentType attribute)

 	MAILING_LIST (cyclonedx.model.ExternalReferenceType attribute)

 	make_from_string() (cyclonedx.factory.license.LicenseFactory method)

 	make_outputter() (in module cyclonedx.output)

 	make_schemabased_validator() (in module cyclonedx.validation)

 	make_with_expression() (cyclonedx.factory.license.LicenseFactory method)

 	make_with_id() (cyclonedx.factory.license.LicenseFactory method)

 	make_with_name() (cyclonedx.factory.license.LicenseFactory method)

 	manufacture (cyclonedx.model.bom.BomMetaData property)

 	manufacturer (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.component.Component property)

 	MATURITY_REPORT (cyclonedx.model.ExternalReferenceType attribute)

 	MD5 (cyclonedx.model.HashAlgorithm attribute)

 	mechanism (cyclonedx.model.crypto.RelatedCryptoMaterialSecuredBy property)

 	MEDIUM (cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	message (cyclonedx.model.component.Commit property)

 	metadata (cyclonedx.model.bom.Bom property)

 	method (cyclonedx.model.vulnerability.VulnerabilityRating property)

 	mime_type (cyclonedx.model.component.Component property)

 	MissingOptionalDependencyException

 	MissingOptionalDependencyException.args (class in cyclonedx.exception)

 	mode (cyclonedx.model.crypto.AlgorithmProperties property)

 	MODEL_CARD (cyclonedx.model.ExternalReferenceType attribute)

 	modified (cyclonedx.model.component.Component property)

 	
 module

 	cyclonedx

 	cyclonedx._internal

 	cyclonedx._internal.compare

 	cyclonedx._internal.hash

 	cyclonedx._internal.time

 	cyclonedx.exception

 	cyclonedx.exception.factory

 	cyclonedx.exception.model

 	cyclonedx.exception.output

 	cyclonedx.exception.serialization

 	cyclonedx.factory

 	cyclonedx.factory.license

 	cyclonedx.model

 	cyclonedx.model.bom

 	cyclonedx.model.bom_ref

 	cyclonedx.model.component

 	cyclonedx.model.contact

 	cyclonedx.model.crypto

 	cyclonedx.model.dependency

 	cyclonedx.model.impact_analysis

 	cyclonedx.model.issue

 	cyclonedx.model.license

 	cyclonedx.model.release_note

 	cyclonedx.model.service

 	cyclonedx.model.vulnerability

 	cyclonedx.output

 	cyclonedx.output.json

 	cyclonedx.output.xml

 	cyclonedx.schema

 	cyclonedx.schema._res

 	cyclonedx.schema.schema

 	cyclonedx.serialization

 	cyclonedx.spdx

 	cyclonedx.validation

 	cyclonedx.validation.json

 	cyclonedx.validation.model

 	cyclonedx.validation.xml

 	
 	MONKEY (cyclonedx.model.component.PatchClassification attribute)

 	MutuallyExclusivePropertiesException (class in cyclonedx.exception.model)

N

 	
 	name (cyclonedx.model.component.Component property)

 	(cyclonedx.model.component.Swid property)

 	(cyclonedx.model.contact.OrganizationalContact property)

 	(cyclonedx.model.contact.OrganizationalEntity property)

 	(cyclonedx.model.crypto.ProtocolPropertiesCipherSuite property)

 	(cyclonedx.model.IdentifiableAction property)

 	(cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.issue.IssueTypeSource property)

 	(cyclonedx.model.license.DisjunctiveLicense property)

 	(cyclonedx.model.Property property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.Tool property)

 	(cyclonedx.model.vulnerability.VulnerabilitySource property)

 	name() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	(cyclonedx.schema.OutputFormat method)

 	(cyclonedx.schema.SchemaVersion method)

 	
 	nist_quantum_security_level (cyclonedx.model.crypto.AlgorithmProperties property)

 	NONCE (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	NONE (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	NoPropertiesProvidedException (class in cyclonedx.exception.model)

 	NOT_AFFECTED (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	not_valid_after (cyclonedx.model.crypto.CertificateProperties property)

 	not_valid_before (cyclonedx.model.crypto.CertificateProperties property)

 	Note (class in cyclonedx.model)

 	notes (cyclonedx.model.component.Pedigree property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	NoteText (class in cyclonedx.model)

O

 	
 	OAEP (cyclonedx.model.crypto.CryptoPadding attribute)

 	OFB (cyclonedx.model.crypto.CryptoMode attribute)

 	oid (cyclonedx.model.crypto.CryptoProperties property)

 	omnibor_ids (cyclonedx.model.component.Component property)

 	OmniborId (class in cyclonedx.model.component)

 	OPERATING_SYSTEM (cyclonedx.model.component.ComponentType attribute)

 	OPTIONAL (cyclonedx.model.component.ComponentScope attribute)

 	OrganizationalContact (class in cyclonedx.model.contact)

 	OrganizationalEntity (class in cyclonedx.model.contact)

 	organizations (cyclonedx.model.vulnerability.VulnerabilityCredits property)

 	OTHER (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	(cyclonedx.model.crypto.CryptoFunction attribute)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	(cyclonedx.model.crypto.CryptoMode attribute)

 	(cyclonedx.model.crypto.CryptoPadding attribute)

 	(cyclonedx.model.crypto.CryptoPrimitive attribute)

 	(cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	(cyclonedx.model.ExternalReferenceType attribute)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	OUTBOUND (cyclonedx.model.DataFlow attribute)

 	output_as_string() (cyclonedx.output.BaseOutput method)

 	(cyclonedx.output.json.Json method)

 	(cyclonedx.output.json.JsonV1Dot0 method)

 	(cyclonedx.output.json.JsonV1Dot1 method)

 	(cyclonedx.output.json.JsonV1Dot2 method)

 	(cyclonedx.output.json.JsonV1Dot3 method)

 	(cyclonedx.output.json.JsonV1Dot4 method)

 	(cyclonedx.output.json.JsonV1Dot5 method)

 	(cyclonedx.output.json.JsonV1Dot6 method)

 	(cyclonedx.output.xml.Xml method)

 	(cyclonedx.output.xml.XmlV1Dot0 method)

 	(cyclonedx.output.xml.XmlV1Dot1 method)

 	(cyclonedx.output.xml.XmlV1Dot2 method)

 	(cyclonedx.output.xml.XmlV1Dot3 method)

 	(cyclonedx.output.xml.XmlV1Dot4 method)

 	(cyclonedx.output.xml.XmlV1Dot5 method)

 	(cyclonedx.output.xml.XmlV1Dot6 method)

 	
 	output_format (cyclonedx.output.BaseOutput property)

 	(cyclonedx.output.json.Json property)

 	(cyclonedx.output.json.JsonV1Dot0 property)

 	(cyclonedx.output.json.JsonV1Dot1 property)

 	(cyclonedx.output.json.JsonV1Dot2 property)

 	(cyclonedx.output.json.JsonV1Dot3 property)

 	(cyclonedx.output.json.JsonV1Dot4 property)

 	(cyclonedx.output.json.JsonV1Dot5 property)

 	(cyclonedx.output.json.JsonV1Dot6 property)

 	(cyclonedx.output.xml.Xml property)

 	(cyclonedx.output.xml.XmlV1Dot0 property)

 	(cyclonedx.output.xml.XmlV1Dot1 property)

 	(cyclonedx.output.xml.XmlV1Dot2 property)

 	(cyclonedx.output.xml.XmlV1Dot3 property)

 	(cyclonedx.output.xml.XmlV1Dot4 property)

 	(cyclonedx.output.xml.XmlV1Dot5 property)

 	(cyclonedx.output.xml.XmlV1Dot6 property)

 	(cyclonedx.validation.BaseSchemabasedValidator property)

 	(cyclonedx.validation.json.JsonStrictValidator property)

 	(cyclonedx.validation.json.JsonValidator property)

 	(cyclonedx.validation.xml.XmlValidator property)

 	output_to_file() (cyclonedx.output.BaseOutput method)

 	(cyclonedx.output.json.Json method)

 	(cyclonedx.output.json.JsonV1Dot0 method)

 	(cyclonedx.output.json.JsonV1Dot1 method)

 	(cyclonedx.output.json.JsonV1Dot2 method)

 	(cyclonedx.output.json.JsonV1Dot3 method)

 	(cyclonedx.output.json.JsonV1Dot4 method)

 	(cyclonedx.output.json.JsonV1Dot5 method)

 	(cyclonedx.output.json.JsonV1Dot6 method)

 	OutputFormat (class in cyclonedx.schema)

 	OWASP (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

P

 	
 	PackageUrl (class in cyclonedx.serialization)

 	padding (cyclonedx.model.crypto.AlgorithmProperties property)

 	parameter_set_identifier (cyclonedx.model.crypto.AlgorithmProperties property)

 	partition() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	PASSWORD (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	Patch (class in cyclonedx.model.component)

 	patch (cyclonedx.model.component.Swid property)

 	PatchClassification (class in cyclonedx.model.component)

 	patches (cyclonedx.model.component.Pedigree property)

 	Pedigree (class in cyclonedx.model.component)

 	pedigree (cyclonedx.model.component.Component property)

 	PENTEST_REPORT (cyclonedx.model.ExternalReferenceType attribute)

 	
 	phone (cyclonedx.model.contact.OrganizationalContact property)

 	PKCS1V15 (cyclonedx.model.crypto.CryptoPadding attribute)

 	PKCS5 (cyclonedx.model.crypto.CryptoPadding attribute)

 	PKCS7 (cyclonedx.model.crypto.CryptoPadding attribute)

 	PKE (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	PLATFORM (cyclonedx.model.component.ComponentType attribute)

 	POAM (cyclonedx.model.ExternalReferenceType attribute)

 	post_office_box_number (cyclonedx.model.contact.PostalAddress property)

 	postal_code (cyclonedx.model.contact.PostalAddress property)

 	PostalAddress (class in cyclonedx.model.contact)

 	PPC64 (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	PPC64LE (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	PRE_ACTIVATION (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	prf (cyclonedx.model.crypto.Ikev2TransformTypes property)

 	primitive (cyclonedx.model.crypto.AlgorithmProperties property)

 	PRIVATE_KEY (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	properties (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.component.Component property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	Property (class in cyclonedx.model)

 	PROTECTED_AT_PERIMITER (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	PROTECTED_AT_RUNTIME (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	PROTECTED_BY_COMPILER (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	PROTECTED_BY_MITIGATING_CONTROL (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	PROTOCOL (cyclonedx.model.crypto.CryptoAssetType attribute)

 	protocol_properties (cyclonedx.model.crypto.CryptoProperties property)

 	ProtocolProperties (class in cyclonedx.model.crypto)

 	ProtocolPropertiesCipherSuite (class in cyclonedx.model.crypto)

 	ProtocolPropertiesType (class in cyclonedx.model.crypto)

 	provider (cyclonedx.model.service.Service property)

 	PUBLIC_KEY (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	published (cyclonedx.model.vulnerability.Vulnerability property)

 	publisher (cyclonedx.model.component.Component property)

 	purl (cyclonedx.model.component.Component property)

Q

 	
 	QUALITY_METRICS (cyclonedx.model.ExternalReferenceType attribute)

R

 	
 	range (cyclonedx.model.vulnerability.BomTargetVersionRange property)

 	ratings (cyclonedx.model.vulnerability.Vulnerability property)

 	RAW (cyclonedx.model.crypto.CryptoPadding attribute)

 	recommendation (cyclonedx.model.vulnerability.Vulnerability property)

 	ref (cyclonedx.model.dependency.Dependency property)

 	(cyclonedx.model.vulnerability.BomTarget property)

 	references (cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	region (cyclonedx.model.contact.PostalAddress property)

 	register_dependency() (cyclonedx.model.bom.Bom method)

 	RELATED_CRYPTO_MATERIAL (cyclonedx.model.crypto.CryptoAssetType attribute)

 	related_crypto_material_properties (cyclonedx.model.crypto.CryptoProperties property)

 	RelatedCryptoMaterialProperties (class in cyclonedx.model.crypto)

 	RelatedCryptoMaterialSecuredBy (class in cyclonedx.model.crypto)

 	RelatedCryptoMaterialState (class in cyclonedx.model.crypto)

 	RelatedCryptoMaterialType (class in cyclonedx.model.crypto)

 	release_notes (cyclonedx.model.component.Component property)

 	RELEASE_NOTES (cyclonedx.model.ExternalReferenceType attribute)

 	release_notes (cyclonedx.model.service.Service property)

 	ReleaseNotes (class in cyclonedx.model.release_note)

 	removeprefix() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	removesuffix() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	replace() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	REQUIRED (cyclonedx.model.component.ComponentScope attribute)

 	REQUIRES_CONFIGURATION (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	REQUIRES_DEPENDENCY (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	REQUIRES_ENVIRONMENT (cyclonedx.model.impact_analysis.ImpactAnalysisJustification attribute)

 	reset() (cyclonedx.output.BomRefDiscriminator method)

 	RESOLVED (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	RESOLVED_WITH_PEDIGREE (cyclonedx.model.impact_analysis.ImpactAnalysisState attribute)

 	resolves (cyclonedx.model.component.Patch property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	responses (cyclonedx.model.vulnerability.VulnerabilityAnalysis property)

 	RFC_9166 (cyclonedx.model.ExternalReferenceType attribute)

 	rfind() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	rindex() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	RISK_ASSESSMENT (cyclonedx.model.ExternalReferenceType attribute)

 	rjust() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	ROLLBACK (cyclonedx.model.impact_analysis.ImpactAnalysisResponse attribute)

 	rpartition() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	rsplit() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	rstrip() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	RUNTIME_ANALYSIS_REPORT (cyclonedx.model.ExternalReferenceType attribute)

S

 	
 	S390X (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	SALT (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	schema_version (cyclonedx.output.BaseOutput property)

 	(cyclonedx.output.json.Json property)

 	(cyclonedx.output.json.JsonV1Dot0 property)

 	(cyclonedx.output.json.JsonV1Dot1 property)

 	(cyclonedx.output.json.JsonV1Dot2 property)

 	(cyclonedx.output.json.JsonV1Dot3 property)

 	(cyclonedx.output.json.JsonV1Dot4 property)

 	(cyclonedx.output.json.JsonV1Dot5 property)

 	(cyclonedx.output.json.JsonV1Dot6 property)

 	(cyclonedx.output.xml.Xml property)

 	(cyclonedx.output.xml.XmlV1Dot0 property)

 	(cyclonedx.output.xml.XmlV1Dot1 property)

 	(cyclonedx.output.xml.XmlV1Dot2 property)

 	(cyclonedx.output.xml.XmlV1Dot3 property)

 	(cyclonedx.output.xml.XmlV1Dot4 property)

 	(cyclonedx.output.xml.XmlV1Dot5 property)

 	(cyclonedx.output.xml.XmlV1Dot6 property)

 	(cyclonedx.validation.BaseSchemabasedValidator property)

 	(cyclonedx.validation.json.JsonStrictValidator property)

 	(cyclonedx.validation.json.JsonValidator property)

 	schema_version_enum (cyclonedx.schema.schema.BaseSchemaVersion property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot0 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot1 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot2 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot3 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot4 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot5 property)

 	(cyclonedx.schema.schema.SchemaVersion1Dot6 property)

 	SCHEMA_VERSIONS (in module cyclonedx.schema.schema)

 	SchemabasedValidator (class in cyclonedx.validation)

 	SchemaVersion (class in cyclonedx.schema)

 	SchemaVersion1Dot0 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot1 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot2 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot3 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot4 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot5 (class in cyclonedx.schema.schema)

 	SchemaVersion1Dot6 (class in cyclonedx.schema.schema)

 	SCM (cyclonedx.model.ExternalReferenceType attribute)

 	scope (cyclonedx.model.component.Component property)

 	score (cyclonedx.model.vulnerability.VulnerabilityRating property)

 	SECRET_KEY (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	secured_by (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	SECURITY (cyclonedx.model.issue.IssueClassification attribute)

 	SECURITY_CONTACT (cyclonedx.model.ExternalReferenceType attribute)

 	SEED (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	serial_number (cyclonedx.model.bom.Bom property)

 	SerializationOfUnexpectedValueException

 	SerializationOfUnexpectedValueException.args (class in cyclonedx.exception.serialization)

 	SerializationOfUnsupportedComponentTypeException

 	SerializationOfUnsupportedComponentTypeException.args (class in cyclonedx.exception.serialization)

 	serialize() (cyclonedx.model.component.OmniborId class method)

 	(cyclonedx.model.component.Swhid class method)

 	(cyclonedx.model.XsUri class method)

 	(cyclonedx.serialization.BomRefHelper class method)

 	(cyclonedx.serialization.PackageUrl class method)

 	(cyclonedx.serialization.UrnUuidHelper class method)

 	Service (class in cyclonedx.model.service)

 	services (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.service.Service property)

 	set_bom() (cyclonedx.output.BaseOutput method)

 	(cyclonedx.output.json.Json method)

 	(cyclonedx.output.json.JsonV1Dot0 method)

 	(cyclonedx.output.json.JsonV1Dot1 method)

 	(cyclonedx.output.json.JsonV1Dot2 method)

 	(cyclonedx.output.json.JsonV1Dot3 method)

 	(cyclonedx.output.json.JsonV1Dot4 method)

 	(cyclonedx.output.json.JsonV1Dot5 method)

 	(cyclonedx.output.json.JsonV1Dot6 method)

 	severity (cyclonedx.model.vulnerability.VulnerabilityRating property)

 	SHA3_256 (cyclonedx.model.HashAlgorithm attribute)

 	SHA3_384 (cyclonedx.model.HashAlgorithm attribute)

 	SHA3_512 (cyclonedx.model.HashAlgorithm attribute)

 	SHA_1 (cyclonedx.model.HashAlgorithm attribute)

 	SHA_256 (cyclonedx.model.HashAlgorithm attribute)

 	SHA_384 (cyclonedx.model.HashAlgorithm attribute)

 	SHA_512 (cyclonedx.model.HashAlgorithm attribute)

 	SHARED_SECRET (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	SIGN (cyclonedx.model.crypto.CryptoFunction attribute)

 	SIGNATURE (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	signature_algorithm_ref (cyclonedx.model.crypto.CertificateProperties property)

 	size (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	SOCIAL (cyclonedx.model.ExternalReferenceType attribute)

 	social_image (cyclonedx.model.release_note.ReleaseNotes property)

 	SOFTWARE_ENCRYPTED_RAM (cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	SOFTWARE_PLAIN_RAM (cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	SOFTWARE_TEE (cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	source (cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	(cyclonedx.model.vulnerability.VulnerabilityRating property)

 	(cyclonedx.model.vulnerability.VulnerabilityReference property)

 	SOURCE_DISTRIBUTION (cyclonedx.model.ExternalReferenceType attribute)

 	SPDX_JSON (in module cyclonedx.schema._res)

 	SPDX_XML (in module cyclonedx.schema._res)

 	split() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	splitlines() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	SSH (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	SSTP (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	SSVC (cyclonedx.model.vulnerability.VulnerabilityScoreSource attribute)

 	startswith() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	state (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	(cyclonedx.model.vulnerability.VulnerabilityAnalysis property)

 	STATIC_ANALYSIS_REPORT (cyclonedx.model.ExternalReferenceType attribute)

 	status (cyclonedx.model.vulnerability.BomTargetVersionRange property)

 	STREAM_CIPHER (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	street_address (cyclonedx.model.contact.PostalAddress property)

 	strip() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	subject_name (cyclonedx.model.crypto.CertificateProperties property)

 	subject_public_key_ref (cyclonedx.model.crypto.CertificateProperties property)

 	supplier (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.component.Component property)

 	SUPPORT (cyclonedx.model.ExternalReferenceType attribute)

 	SUSPENDED (cyclonedx.model.crypto.RelatedCryptoMaterialState attribute)

 	swapcase() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	Swhid (class in cyclonedx.model.component)

 	swhids (cyclonedx.model.component.Component property)

 	Swid (class in cyclonedx.model.component)

 	swid (cyclonedx.model.component.Component property)

T

 	
 	TAG (cyclonedx.model.crypto.CryptoFunction attribute)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	tag_id (cyclonedx.model.component.Swid property)

 	tag_version (cyclonedx.model.component.Swid property)

 	tags (cyclonedx.model.component.Component property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	text (cyclonedx.model.component.Diff property)

 	(cyclonedx.model.component.Swid property)

 	(cyclonedx.model.Copyright property)

 	(cyclonedx.model.license.DisjunctiveLicense property)

 	(cyclonedx.model.Note property)

 	ThisTool (in module cyclonedx.model)

 	THREAT_MODEL (cyclonedx.model.ExternalReferenceType attribute)

 	timestamp (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.IdentifiableAction property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

 	title (cyclonedx.model.release_note.ReleaseNotes property)

 	(cyclonedx.model.vulnerability.VulnerabilityAdvisory property)

 	title() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	TLS (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	to_version() (cyclonedx.schema.SchemaVersion method)

 	TOKEN (cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	Tool (class in cyclonedx.model)

 	tools (cyclonedx.model.bom.BomMetaData property)

 	(cyclonedx.model.vulnerability.Vulnerability property)

 	translate() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	type (cyclonedx.model.component.Component property)

 	(cyclonedx.model.component.Patch property)

 	(cyclonedx.model.crypto.ProtocolProperties property)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	(cyclonedx.model.ExternalReference property)

 	(cyclonedx.model.issue.IssueType property)

 	(cyclonedx.model.release_note.ReleaseNotes property)

U

 	
 	uid (cyclonedx.model.component.Commit property)

 	UNAFFECTED (cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus attribute)

 	UNKNOWN (cyclonedx.model.crypto.CryptoCertificationLevel attribute)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment attribute)

 	(cyclonedx.model.crypto.CryptoFunction attribute)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	(cyclonedx.model.crypto.CryptoMode attribute)

 	(cyclonedx.model.crypto.CryptoPadding attribute)

 	(cyclonedx.model.crypto.CryptoPrimitive attribute)

 	(cyclonedx.model.crypto.ProtocolPropertiesType attribute)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType attribute)

 	(cyclonedx.model.DataFlow attribute)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus attribute)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity attribute)

 	UnknownComponentDependencyException (class in cyclonedx.exception.model)

 	UnknownHashTypeException (class in cyclonedx.exception.model)

 	UNOFFICIAL (cyclonedx.model.component.PatchClassification attribute)

 	UPDATE (cyclonedx.model.impact_analysis.ImpactAnalysisResponse attribute)

 	update_date (cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	updated (cyclonedx.model.vulnerability.Vulnerability property)

 	upper() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	
 	uri (cyclonedx.model.XsUri property)

 	url (cyclonedx.model.component.Commit property)

 	(cyclonedx.model.component.Diff property)

 	(cyclonedx.model.component.Swid property)

 	(cyclonedx.model.ExternalReference property)

 	(cyclonedx.model.issue.IssueTypeSource property)

 	(cyclonedx.model.license.DisjunctiveLicense property)

 	(cyclonedx.model.vulnerability.VulnerabilityAdvisory property)

 	(cyclonedx.model.vulnerability.VulnerabilitySource property)

 	urls (cyclonedx.model.contact.OrganizationalEntity property)

 	urn() (cyclonedx.model.bom.Bom method)

 	UrnUuidHelper (class in cyclonedx.serialization)

V

 	
 	V1_0 (cyclonedx.schema.SchemaVersion attribute)

 	V1_1 (cyclonedx.schema.SchemaVersion attribute)

 	V1_2 (cyclonedx.schema.SchemaVersion attribute)

 	V1_3 (cyclonedx.schema.SchemaVersion attribute)

 	V1_4 (cyclonedx.schema.SchemaVersion attribute)

 	V1_5 (cyclonedx.schema.SchemaVersion attribute)

 	V1_6 (cyclonedx.schema.SchemaVersion attribute)

 	validate() (cyclonedx.model.bom.Bom method)

 	validate_str() (cyclonedx.validation.BaseSchemabasedValidator method)

 	(cyclonedx.validation.json.JsonStrictValidator method)

 	(cyclonedx.validation.json.JsonValidator method)

 	(cyclonedx.validation.SchemabasedValidator method)

 	ValidationError (class in cyclonedx.validation)

 	value (cyclonedx.model.bom_ref.BomRef property)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialProperties property)

 	(cyclonedx.model.license.LicenseExpression property)

 	(cyclonedx.model.Property property)

 	value() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 	(cyclonedx.schema.OutputFormat method)

 	(cyclonedx.schema.SchemaVersion method)

 	
 	variants (cyclonedx.model.component.Pedigree property)

 	VCS (cyclonedx.model.ExternalReferenceType attribute)

 	vector (cyclonedx.model.vulnerability.VulnerabilityRating property)

 	vendor (cyclonedx.model.Tool property)

 	VERIFY (cyclonedx.model.crypto.CryptoFunction attribute)

 	version (cyclonedx.model.bom.Bom property)

 	(cyclonedx.model.component.Component property)

 	(cyclonedx.model.component.Swid property)

 	(cyclonedx.model.crypto.ProtocolProperties property)

 	(cyclonedx.model.service.Service property)

 	(cyclonedx.model.Tool property)

 	(cyclonedx.model.vulnerability.BomTargetVersionRange property)

 	versions (cyclonedx.model.vulnerability.BomTarget property)

 	vulnerabilities (cyclonedx.model.bom.Bom property)

 	Vulnerability (class in cyclonedx.model.vulnerability)

 	VULNERABILITY_ASSERTION (cyclonedx.model.ExternalReferenceType attribute)

 	VulnerabilityAdvisory (class in cyclonedx.model.vulnerability)

 	VulnerabilityAnalysis (class in cyclonedx.model.vulnerability)

 	VulnerabilityCredits (class in cyclonedx.model.vulnerability)

 	VulnerabilityRating (class in cyclonedx.model.vulnerability)

 	VulnerabilityReference (class in cyclonedx.model.vulnerability)

 	VulnerabilityScoreSource (class in cyclonedx.model.vulnerability)

 	VulnerabilitySeverity (class in cyclonedx.model.vulnerability)

 	VulnerabilitySource (class in cyclonedx.model.vulnerability)

W

 	
 	WEBSITE (cyclonedx.model.ExternalReferenceType attribute)

 	WILL_NOT_FIX (cyclonedx.model.impact_analysis.ImpactAnalysisResponse attribute)

 	with_traceback() (cyclonedx.exception.CycloneDxException method)

 	(cyclonedx.exception.factory.CycloneDxFactoryException method)

 	(cyclonedx.exception.factory.InvalidLicenseExpressionException method)

 	(cyclonedx.exception.factory.InvalidSpdxLicenseException method)

 	(cyclonedx.exception.factory.LicenseChoiceFactoryException method)

 	(cyclonedx.exception.factory.LicenseFactoryException method)

 	(cyclonedx.exception.MissingOptionalDependencyException method)

 	(cyclonedx.exception.serialization.CycloneDxDeserializationException method)

 	(cyclonedx.exception.serialization.CycloneDxSerializationException method)

 	(cyclonedx.exception.serialization.SerializationOfUnexpectedValueException method)

 	(cyclonedx.exception.serialization.SerializationOfUnsupportedComponentTypeException method)

 	
 	WORKAROUND_AVAILABLE (cyclonedx.model.impact_analysis.ImpactAnalysisResponse attribute)

 	WPA (cyclonedx.model.crypto.ProtocolPropertiesType attribute)

X

 	
 	X86_32 (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	X86_64 (cyclonedx.model.crypto.CryptoImplementationPlatform attribute)

 	x_trust_boundary (cyclonedx.model.service.Service property)

 	Xml (class in cyclonedx.output.xml)

 	XML (cyclonedx.schema.OutputFormat attribute)

 	xml_denormalize() (cyclonedx.serialization.LicenseRepositoryHelper class method)

 	xml_normalize() (cyclonedx.serialization.LicenseRepositoryHelper class method)

 	XmlV1Dot0 (class in cyclonedx.output.xml)

 	
 	XmlV1Dot1 (class in cyclonedx.output.xml)

 	XmlV1Dot2 (class in cyclonedx.output.xml)

 	XmlV1Dot3 (class in cyclonedx.output.xml)

 	XmlV1Dot4 (class in cyclonedx.output.xml)

 	XmlV1Dot5 (class in cyclonedx.output.xml)

 	XmlV1Dot6 (class in cyclonedx.output.xml)

 	XmlValidator (class in cyclonedx.validation.xml)

 	XOF (cyclonedx.model.crypto.CryptoPrimitive attribute)

 	XsUri (class in cyclonedx.model)

Z

 	
 	zfill() (cyclonedx.model.component.ComponentScope method)

 	(cyclonedx.model.component.ComponentType method)

 	(cyclonedx.model.component.PatchClassification method)

 	(cyclonedx.model.crypto.CryptoAssetType method)

 	(cyclonedx.model.crypto.CryptoCertificationLevel method)

 	(cyclonedx.model.crypto.CryptoExecutionEnvironment method)

 	(cyclonedx.model.crypto.CryptoFunction method)

 	(cyclonedx.model.crypto.CryptoImplementationPlatform method)

 	(cyclonedx.model.crypto.CryptoMode method)

 	(cyclonedx.model.crypto.CryptoPadding method)

 	(cyclonedx.model.crypto.CryptoPrimitive method)

 	(cyclonedx.model.crypto.ProtocolPropertiesType method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialState method)

 	(cyclonedx.model.crypto.RelatedCryptoMaterialType method)

 	(cyclonedx.model.DataFlow method)

 	(cyclonedx.model.Encoding method)

 	(cyclonedx.model.ExternalReferenceType method)

 	(cyclonedx.model.HashAlgorithm method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisAffectedStatus method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisJustification method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisResponse method)

 	(cyclonedx.model.impact_analysis.ImpactAnalysisState method)

 	(cyclonedx.model.issue.IssueClassification method)

 	(cyclonedx.model.license.LicenseAcknowledgement method)

 	(cyclonedx.model.vulnerability.VulnerabilityScoreSource method)

 	(cyclonedx.model.vulnerability.VulnerabilitySeverity method)

 cyclonedx._internal

cyclonedx._internal

!!! ALL SYMBOLS IN HERE ARE INTERNAL.
Everything might change without any notice.

Submodules

	cyclonedx._internal.compare

	cyclonedx._internal.hash

	cyclonedx._internal.time

 cyclonedx._internal.compare

cyclonedx._internal.compare

!!! ALL SYMBOLS IN HERE ARE INTERNAL.
Everything might change without any notice.

Module Contents

Classes

	ComparableTuple

	Allows comparison of tuples, allowing for None values.

	ComparableDict

	Allows comparison of dictionaries, allowing for missing/None values.

	ComparablePackageURL

	Allows comparison of PackageURL, allowing for qualifiers.

	
class cyclonedx._internal.compare.ComparableTuple

	Bases: Tuple[Optional[Any], Ellipsis]

Allows comparison of tuples, allowing for None values.

	
class tuple

	Bases: object

Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

	
count()

	Return number of occurrences of value.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
count()

	Return number of occurrences of value.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
class cyclonedx._internal.compare.ComparableDict(dict_: Dict[Any, Any])

	Allows comparison of dictionaries, allowing for missing/None values.

	
class cyclonedx._internal.compare.ComparablePackageURL

	Bases: ComparableTuple

Allows comparison of PackageURL, allowing for qualifiers.

	
class tuple

	Bases: object

Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

	
count()

	Return number of occurrences of value.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
count()

	Return number of occurrences of value.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

 cyclonedx._internal.hash

cyclonedx._internal.hash

!!! ALL SYMBOLS IN HERE ARE INTERNAL.
Everything might change without any notice.

Module Contents

Functions

	file_sha1sum(→ str)

	Generate a SHA1 hash of the provided file.

	
cyclonedx._internal.hash.file_sha1sum(filename: str) → str

	Generate a SHA1 hash of the provided file.

	Args:
	
	filename:
	Absolute path to file to hash as str

	Returns:
	SHA-1 hash

 cyclonedx._internal.time

cyclonedx._internal.time

!!! ALL SYMBOLS IN HERE ARE INTERNAL.
Everything might change without any notice.

Module Contents

Functions

	get_now_utc(→ datetime.datetime)

	

	
cyclonedx._internal.time.get_now_utc() → datetime.datetime

	

 cyclonedx.schema._res

cyclonedx.schema._res

Content in here is internal, not for public use.
Breaking changes without notice may happen.

Package Contents

	
cyclonedx.schema._res.BOM_XML: Dict[cyclonedx.schema.SchemaVersion, str | None]

	

	
cyclonedx.schema._res.BOM_JSON: Dict[cyclonedx.schema.SchemaVersion, str | None]

	

	
cyclonedx.schema._res.BOM_JSON_STRICT: Dict[cyclonedx.schema.SchemaVersion, str | None]

	

	
cyclonedx.schema._res.SPDX_JSON

	

	
cyclonedx.schema._res.SPDX_XML

	

	
cyclonedx.schema._res.JSF

	

_static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 CycloneDX’s Python Library documentation

 		
 Installation

 		
 Extras

 		
 Architecture

 		
 Modelling

 		
 Example BOM created programmatically

 		
 Example BOM created from existing CycloneDX BOM

 		
 Schema Support

 		
 Root Level Schema Support

 		
 Internal Model Schema Support

 		
 Outputting

 		
 Supported CycloneDX Schema Versions

 		
 Outputting to JSON

 		
 Outputting to XML

 		
 Examples

 		
 Complex Serialize

 		
 Complex Deserialize

 		
 Contributing

 		
 Setup

 		
 Code style

 		
 Documentation

 		
 Testing

 		
 Sign off your commits

 		
 Pre-commit hooks

 		
 Support

 		
 Python Version Support

 		
 Changelog

 		
 CHANGELOG

 		
 v7.3.2 (2024-04-26)

 		
 v7.3.1 (2024-04-22)

 		
 v7.3.0 (2024-04-19)

 		
 v7.2.0 (2024-04-19)

 		
 v7.1.0 (2024-04-10)

 		
 v7.0.0 (2024-04-09)

 		
 v6.4.4 (2024-03-18)

 		
 v6.4.3 (2024-03-04)

 		
 v6.4.2 (2024-03-01)

 		
 v6.4.1 (2024-01-30)

 		
 v6.4.0 (2024-01-22)

 		
 v6.3.0 (2024-01-06)

 		
 v6.2.0 (2023-12-31)

 		
 v6.1.0 (2023-12-22)

 		
 v6.0.0 (2023-12-10)

 		
 v5.2.0 (2023-12-02)

 		
 v5.1.1 (2023-11-02)

 		
 v5.1.0 (2023-10-31)

 		
 v5.0.1 (2023-10-24)

 		
 v5.0.0 (2023-10-24)

 		
 BREAKING CHANGES

 		
 Fixed

 		
 Changed

 		
 Added

 		
 Deprecated

 		
 Tests

 		
 Misc

 		
 v4.2.3 (2023-10-16)

 		
 v4.2.2 (2023-09-14)

 		
 v4.2.1 (2023-09-06)

 		
 v4.2.0 (2023-09-06)

 		
 v4.1.0 (2023-08-27)

 		
 v4.0.1 (2023-06-28)

 		
 v4.0.0 (2023-03-20)

 		
 v3.1.5 (2023-01-12)

 		
 v3.1.4 (2023-01-11)

 		
 v3.1.3 (2023-01-07)

 		
 v3.1.2 (2023-01-06)

 		
 v3.1.1 (2022-11-28)

 		
 v3.1.0 (2022-09-15)

 		
 v2.7.1 (2022-08-01)

 		
 v2.7.0 (2022-07-21)

 		
 v2.6.0 (2022-06-20)

 		
 v2.5.2 (2022-06-15)

 		
 v2.5.1 (2022-06-10)

 		
 v2.5.0 (2022-06-10)

 		
 v2.4.0 (2022-05-17)

 		
 v2.3.0 (2022-04-20)

 		
 v2.2.0 (2022-04-12)

 		
 v2.1.1 (2022-04-05)

 		
 v2.1.0 (2022-03-28)

 		
 v2.0.0 (2022-02-21)

 		
 v1.3.0 (2022-01-24)

 		
 v1.2.0 (2022-01-24)

 		
 v1.1.1 (2022-01-19)

 		
 v1.1.0 (2022-01-13)

 		
 v1.0.0 (2022-01-13)

 		
 v0.12.3 (2021-12-15)

 		
 v0.12.2 (2021-12-09)

 		
 v0.12.1 (2021-12-09)

 		
 v0.12.0 (2021-12-09)

 		
 v0.11.1 (2021-11-10)

 		
 v0.11.0 (2021-11-10)

 		
 v0.10.2 (2021-10-21)

 		
 v0.10.1 (2021-10-21)

 		
 v0.10.0 (2021-10-20)

 		
 v0.9.1 (2021-10-19)

 		
 v0.9.0 (2021-10-19)

 		
 v0.8.3 (2021-10-14)

 		
 v0.8.2 (2021-10-14)

 		
 v0.8.1 (2021-10-12)

 		
 v0.8.0 (2021-10-12)

 		
 v0.7.0 (2021-10-11)

 		
 v0.6.2 (2021-10-11)

 		
 v0.6.1 (2021-10-11)

 		
 v0.6.0 (2021-10-11)

 		
 v0.5.0 (2021-10-11)

 		
 v0.4.1 (2021-09-27)

 		
 v0.4.0 (2021-09-16)

 		
 v0.3.0 (2021-09-15)

 		
 v0.2.0 (2021-09-14)

 		
 v0.1.0 (2021-09-13)

 		
 v0.0.11 (2021-09-10)

 		
 v0.0.10 (2021-09-08)

 		
 v0.0.9 (2021-09-08)

 		
 v0.0.8 (2021-09-08)

 		
 v0.0.7 (2021-09-08)

 		
 v0.0.6 (2021-09-08)

 		
 v0.0.5 (2021-09-08)

 		
 v0.0.4 (2021-09-08)

 		
 v0.0